
Spooky Boundaries at a Distance:

Exploring Transversality and Stationarity with Deep Learning

Mahdi Ebrahimi Kahou1 Jesús Fernández-Villaverde2 Sebastián Gómez-Cardona1 Jesse Perla1 Jan Rosa1

October 24, 2022

1University of British Columbia, Vancouver School of Economics

2University of Pennsylvania

Motivation

Motivation

• Dynamic models usually require economic conditions eliminating explosive solutions (e.g.,

transversality or no-bubble).

• These are variations of “boundary conditions” in ODEs and PDEs on forward-looking behavior.

• Deterministic, stochastic, sequential, recursive formulations all require conditions in some form.

• These forward-looking boundary conditions are the key limitation on increasing dimensionality:

• Otherwise, in sequential setups, we can easily solve high-dimensional initial value problems.

• In recursive models accurate solutions are required for arbitrary values of the state variables.

• Question: Can we avoid precisely calculating steady-state, BGP, and stationary distribution, which

are never reached, and still have accurate short/medium-run dynamics disciplined by these boundary

conditions?

1

Contribution

• Show that deep learning solutions to many dynamic forward-looking models automatically fulfill the

long-run boundary conditions we need (transversality and no-bubble).

• We show how to design the approximation using economic insight.

• Solve classic models with known solutions (asset pricing and neoclassical growth) and show excellent

short/medium term dynamics –even when non-stationary or with steady state multiplicity.

• Suggests these methods may solve high-dimensional problems while avoiding the key computational

limitation.

• We have to understand low-dimensional problems first.

• Intuition: DL has an “implicit bias” toward smooth and simple functions. Explosive solutions are not

smooth.

But first, what is a deep learning solution and the implicit bias?

2

Background: Deep learning for

functional equations

Models as functional equations

Equilibrium conditions in economics can be written as functional equations:

• Take some function(s) ψ ∈ Ψ where ψ : X → Y (e.g., optimal policy and consumption function in

neoclassical growth model).

• Domain X could be state (e.g., capital) or time if sequential.

• The “model” is ` : Ψ × X → R (e.g., Euler residuals and feasibility condition).

• The solution is the root of the model (residuals operator), i.e., 0 ∈ R, at each x ∈ X (e.g., optimal

policy is the root of the Euler over the space of capital).

Then a solution is an ψ∗ ∈ Ψ where `(ψ∗, x) = 0 for all x ∈ X .

3

Example: one formulation of neoclassical growth

An example of a recursive case:

• Domain: x =
[
k
]

and X = R+.

• Solve for the optimal policy k ′(·) and consumption function c(·): So ψ : R→ R2 and Y = R2
+.

• Residuals are the Euler equation and feasibility condition, so R = R2:

`(
[
k ′(·) c(·)

]
︸ ︷︷ ︸

≡ψ

, k︸︷︷︸
≡x

) =

[
u′(c(k))− βu′(c(k ′(k))) (f ′(k ′(k)) + 1− δ)

f (k)− c(k)− k ′(k) + (1− δ)k

]
︸ ︷︷ ︸

model

• Finally, ψ∗ = [k ′(·), c(·)] is a solution if it has zero residuals on domain X .

4

Classical solution method for functional equations

1. Pick finite set of N points X̂ ⊂ X (e.g., a grid).

2. Choose approximation ψ̂(·; θ) ∈ H(Θ) with coefficients Θ ⊆ RM (e.g., Chebyshev polynomials).

3. Fit with nonlinear least-squares

min
θ∈Θ

∑
x∈X̂

`(ψ̂(·; θ), x)2

If θ ∈ Θ is such that `(ψ̂(·; θ), x) = 0 for all x ∈ X̂ we say it interpolates X̂ .

4. The goal is to have good generalization:

• The approximate function is close to the solution outside of X̂ .

• That is ψ̂(x ; θ) ≈ ψ∗(x) for x /∈ X̂ .

5

A deep learning approach

• Deep neural networks are highly-overparameterized functions designed for good generalization.

• Number of coefficients much larger than the grid points (M � N).

• Example: one layer neural network, ψ̂ : RQ → R:

ψ̂(x ; θ) = W2 · σ (W1 · x + b1) + b2

• W1 ∈ RP×Q , b1 ∈ RP×1, W2 ∈ R1×P , and b2 ∈ R.

• σ(·) is a nonlinear function applied element-wise (e.g., max{·, 0}).

• Θ ≡ {b1,W1, b2,W2} are the coefficients, in this example M = PQ + P + P + 1.

• Making it “deeper” by adding another “layer”:

ψ̂(x ; θ) ≡W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3.

• Architecture of the neural networks can be flexibly informed by the economic insight and theory.

However, not crucial for this paper.
6

Deep learning optimizes in a space of functions: which ψ̂?

• Since M � N, it is possible for ψ̂ to interpolate and the objective value will be ≈ 0.

• Since M � N there are many solutions (e.g., θ1 and θ2),

• Agree on the grid points: ψ̂(x ; θ1) ≈ ψ̂(x ; θ2) for x ∈ X̂ .

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
ψ̂∈H

∑
x∈X̂

`(ψ̂, x)2

But which ψ̂?

7

Deep learning and interpolation

• For M large enough, optimizers tend to converge to unique smooth and simple ψ̂ (w.r.t to some

norm ‖ · ‖S). Unique both in X̂ and X . There is a bias toward a specific class of solutions.

• How to interpret: interpolating solutions for some functional norm ‖ · ‖S

min
ψ̂∈H
||ψ̂||S

s.t. `(ψ̂, x) = 0, for x ∈ X̂

• CS and literature refers to this as the inductive bias or implicit bias: optimization process is biased

toward particular ψ̂

• Small values of ‖ · ‖S corresponds to flat solutions with small gradients.

• Characterizing ‖ · ‖S (e.g., Sobolev) is an active research area in CS at the heart of deep learning theory.

Examples

8

Deep learning and interpolation in practice

Reminder: in practice we solve

min
θ∈Θ

∑
x∈X̂

`
(
ψ̂(·; θ), x

)2

• The smooth interpolation is imposed implicitly through the optimization process.

• No explicit norm minimization or penalization is required.

In this paper: we describe how (and when) the minψ̂∈H ||ψ̂||S solutions are also the ones which

automatically fulfill transversality and no-bubble conditions.

• They are disciplined by long-run boundary conditions. Therefore, we can obtain accurate

short/medium-run dynamics.

9

Outline

To explore how we can have accurate short-run dynamics, we show deep learning solutions to

1. Classic linear-asset pricing model.

2. Sequential formulation of the neoclassical growth model.

3. Sequential neoclassical growth model with multiple steady states.

4. Recursive formulation of the neoclassical growth model.

5. Non-stationarity, such as balanced growth path.

10

Linear asset pricing

Sequential formulation

• Dividends, y(t), y0 as given, and follows the process:

y(t + 1) = c + (1 + g)y(t)

• Writing as a linear state-space model with x(t + 1) = Ax(t) and y(t) = Gx(t) and

x(t) ≡
[
1 y(t)

]>
,A ≡

[
1 0

c 1 + g

]
,G ≡

[
0 1

]
• “Fundamental” price given x(t) is PDV with β ∈ (0, 1) and β(1 + g) < 1

pf (t) ≡
∞∑
j=0

βjy(t + j) = G (I − βA)−1x(t).

11

Recursive formulation

With standard transformation, all solutions pf (t) fulfill the recursive equations

p(t) = Gx(t) + βp(t + 1) (1)

x(t + 1) = Ax(t) (2)

0 = lim
T→∞

βTp(T) (3)

x0 given (4)

That is, a system of two difference equations with one boundary and one initial condition.

• The boundary condition (3) is an condition necessary for the problem to be well-posed and have a

unique solution.

• It ensures that p(t) = pf (t) by imposing long-run boundary condition.

• But without this assumption there can be “bubbles” with p(t) 6= pf (t), only fulfilling (1) and (2).

• Intuition: system of {p(t), x(t)} difference equations requires total of two boundaries or initial values

to have a unique solution.

12

Solutions without no-bubble condition

Without the no-bubble condition:

• Solutions in this deterministic asset pricing model are of the form:

p(t) = pf (t) + ζ β−t . (5)

• For any ζ ≥ 0. The initial condition x(0) determines pf (t).

• There are infinitely many solutions.

• The no-bubble condition chooses ζ = 0.

13

Interpolation problem: without no-bubble condition

• A set of points in time X̂ = {t1, . . . , tmax}.
• A family of over-parameterized functions p(·; θ) ∈ H(Θ).

• Generate x(t) using the law of motion and x(0), equation (2).

In practice we minimize the residuals of the recursive form for the price:

min
θ∈Θ

1

|X̂ |
∑
t∈X̂

[p(t; θ)− Gx(t)− βp(t + 1; θ)]2 (6)

• This minimization does not contain no-bubble condition. It has infinitely many minima.

• Does the implicit bias of over-parameterized interpolation weed out the bubbles? Yes.

• Intuition: bubble solutions are explosive, i.e., big functions with big derivatives.

Let’s analyze this more rigorously.

14

Interpolation formulation: min-norm mental model

The min-norm interpretation (mental model) is:

min
p∈H

‖p‖S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ X̂

0 = lim
T→∞

βTp(T)

(7)

(8)

(9)

Where x(t) for t ∈ X̂ is defined by x(0) initial condition and recurrence x(t + 1) = Ax(t) in (2)

• The minimization of norm ‖p‖S is the “inductive bias” toward particular solutions for t ∈ [0,∞] \ X̂ .

15

Is the no-bubble condition still necessary?

• To analyze, drop the no-bubble condition and examine the class of solutions.

• In this case, we know the interpolating solutions to (8) without imposing (9)

p(t) = pf (t) + ζβ−t (10)

• Applying the triangle inequality

‖pf ‖S ≤ ‖p‖S ≤ ‖pf ‖S + ζ ‖β−t‖S (11)

• Relative to classic methods the “deep learning” problem now has a new objective, minimizing ‖p‖S .

• That is, p(t) = pf (t), the solution fulfills the no-bubble condition, and (9) is satisfied at the optima.

• The new objective of minimizing the norm, makes the no-bubble condition redundant.

16

Min-norm norm formulation: redundancy of no-bubble condition

Given the no-bubble condition is automatically fulfilled, could solve the following given some H and

compare to pf (t)

min
p∈H

‖p‖S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ X̂

(12)

(13)

A reminder: in practice, given the X̂ , we directly implement this as p(·; θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|X̂ |
∑
t∈X̂

[p(t; θ)− Gx(t)− βp(t + 1; θ)]2 (14)

Since law of motion is deterministic, given x(0) we generate x(t) with x(t + 1) = Ax(t) for t ∈ X̂

• The X̂ does not need to be contiguous and |X̂ | may be relatively small.

• Most important: no steady state calculated, nor large T ∈ X̂ required. 17

Results

0 10 20 30 40 50
Time(t)

0.85

0.90

0.95

1.00

1.05

Prices: p(t)

pf(t)
p(t)

0 10 20 30 40 50
Time(t)

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000
Relative errors: p(t)

0.985

0.990

1. Pick X̂ = {0, 1, 2, ..., 29} and t > 29 is “extrapolation” where c = 0.01, g = −0.1, and y0 = 0.8.

2. Choose p(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |Θ| = 49.9K coefficients.

3. Fit using L-BFGS and PyTorch in just a few seconds. Could use Adam/SGD/etc.

4. Low generalization errors, even without imposing no-bubble condition.

Relative errors define as εp(t) ≡ p̂(t)−p(t)
p(t) . 18

Contiguous vs. sparse grid

0 10 20 30 40 50
Time(t)

0.85

0.90

0.95

1.00

1.05

Prices: p(t)

pf(t)
p(t): Contiguous
p(t): train(Grid 1)
p(t): train(Grid 2)

0 10 20 30 40 50

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005
p(t): Contiguous

p(t): train(Grid 1)

p(t): train(Grid 2)

0 10 20 30 40 50
Time(t)

0.85

0.90

0.95

1.00

1.05

Prices: p(t)

pf(t)
p(t): Contiguous
p(t): train(Grid 2)

0 10 20 30 40 50
Time(t)

0.010

0.008

0.006

0.004

0.002

0.000

0.002

0.004
Relative errors: p(t)

0.985

0.990

0.985

0.990

• Pick

X̂ (Grid 1) = {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}
and X̂ (Grid 2) = {0, 1, 4, 8, 12, 18, 24, 29}.

• Contrary to popular belief, can use less grid

points relative to alternatives.

• The solutions are very close (with different

seeds)

• Hypothesis verified, the solutions agree on the

seen and unseen grid points.

19

Growing dividends

0 10 20 30 40 50
Time(t)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Price: p(t)

p(t)
pf(t)

0 10 20 30 40 50
Time(t)

0.01

0.00

0.01

0.02

0.03

0.04

Relative error: p(t)

1.450
1.475

• Pick same X̂ but now c = 0.0, g = 0.02.

• Choose p(t; θ) = eφtNN(t; θ1) where θ ≡ {φ, θ1} ∈ Θ are the coefficients.

• Here we used economic intuition of problem to design H(Θ) to generalize better.

• Non-stationary but can figure out the growth.

• Bonus: learns the growth rate: φ ≈ ln(1 + g) and even extrapolates well! Growth rate

20

Neoclassical growth in sequence

space

Sequential formulation

max
{c(t),k(t+1)}∞t=0

∞∑
t=0

βtu (c(t)) (15)

s.t. k(t + 1) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t) (16)

z(t + 1) = (1 + g)z(t) (17)

k(t) ≥ 0 (18)

0 = lim
T→∞

βTu′ (c(T)) k(T + 1) (19)

k0, z0 given (20)

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) =∞, and β ∈ (0, 1).

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP zt .

• Skip standard steps. . . Euler equation: u′(c(t)) = βu′(c(t + 1))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
.

21

Interpolation problem: without transversality condition

• A set of points in time X̂ = {t1, . . . , tmax}.
• A family of over-parameterized functions k(·; θ) ∈ H(Θ).

• Generate z(t) using the law of motion and z(0), equations (17).

• Use the feasibility condition and define c(t; k) ≡ z(t)1−αf
(
k(t)

)
+ (1− δ)k(t)− k(t + 1).

In practice we minimize the Euler and initial conditions residuals:

min
θ∈Θ

(
1

|X̂ |
∑
t∈X̂

λ1

[
u′
(
c(t; k(·, θ))

)
u′
(
c(t + 1; k(·; θ))

) − β[z(t + 1)1−αf ′(k(t + 1; θ)) + 1− δ
]

︸ ︷︷ ︸
Euler residuals

]2

+λ2

[
k(0; θ)− k0︸ ︷︷ ︸

Initial condition residuals

]2)

• λ1 and λ2 positive weights.
22

Interpolation problem: without transversality condition

• This minimization does not contain the transversality condition.

• Without the transversality condition it has infinitely many minima.

• No explicit norm minimization.

• Does the implicit bias weed out the solutions that violate the transversality condition? Yes.

• Intuition: The solutions that violate the transversality condition are big functions with big

derivatives.

Let’s analyze this more rigorously.

23

Interpolation formulation: min-norm mental model

min
k∈H

‖k‖S

s.t. u′(c(t; k)) = βu′(c(t + 1; k))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ X̂

k(0) = k0

0 = lim
T→∞

βTu′(c(T ; k))k(T + 1)

(21)

(22)

(23)

(24)

c(t; k) ≡ z(t)1−αf
(
k(t)

)
+ (1− δ)k(t)− k(t + 1) (25)

Where z(t) for t ∈ X̂ is defined by z(0) initial condition and recurrence z(t + 1) = (1 + g)z(t).

24

Is the transversality condition still necessary? Case of g = 0, z = 1

Sketch of the proof:

• Let {k(t), c(t)} be the sequence of optimal solution.

• Let {k̃(t), c̃(t)} be a sequence of solution that satisfy all the equations except transversality

condition (24).

1. c̃(t) approaches zero.

2. k̃(t) approaches k̃max ≡ δ
1

α−1 , and k(t) approaches k∗ ≡
(
β−1+δ−1

α

) 1
α−1

.

3. Both k̃(t) and k(t) are monotone. k̃max � k∗. Therefore,

0 ≤ ‖k‖S ≤ ‖k̃‖S .

25

Is the transversality condition still necessary? Case of g = 0, z = 1

Example: the violation of the transversality condition.

0 50 100
Time(t)

0

5

10

15

20

25

30

Capital

k(t)
k(t)
k *

kmax

0 50 100
Time(t)

0.0

0.2

0.4

0.6

0.8

1.0

Consumption

c(t)
c(t)
c *

0 50 100
Time(t)

101

103

105

107

Marginal utility of consumption

u′(c(t))
u′(c(t))
u′(c *)

• The solution that violate the transversality are associated with “big” capital path.

• The new objective of minimizing the norm, makes the transversality condition redundant.
26

Min-norm formulation: redundancy of transversality condition

Given the transversality condition is automatically fulfilled, one could solve

min
k∈H

‖k‖S

s.t. u′(c(t; k)) = βu′(c(t + 1; k))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ X̂

k(0) = k0

Reminder: in practice we solve

min
θ∈Θ

(
1

|X̂ |
∑
t∈X̂

λ1

[
u′
(
c(t; k(·, θ))

)
u′
(
c(t + 1; k(·; θ))

) − β[z(t + 1)1−αf ′(k(t + 1; θ)) + 1− δ
]]2

+λ2

[
k(0; θ)− k0︸ ︷︷ ︸

Initial condition residuals

]2)

• |X̂ | may be relatively small, no steady state calculated, nor large T ∈ X̂ required. Sparse Grids 27

Results

0 10 20 30 40 50
Time(t)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Capital and Consumption: k(t) and c(t)

k(t)
k(t)
c(t)
c(t)

0 10 20 30 40 50
Time(t)

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
Relative errors: k(t) and c(t)

1.925
1.950
1.975

1. Pick X̂ = {0, 1, ..., 30} and t > 30 is “extrapolation” α = 1
3 , σ = 1, β = 0.9, g = 0.0, and k0 = 0.4

2. Choose k(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |Θ| = 49.9K coefficients.

3. Fit using L-BFGS in just a few seconds. Comparing with value function iteration solution.

4. Low generalization errors, even without imposing the transversality condition. Small k0 .

Relative errors defined as εc(t) ≡ ĉ(t)−c(t)
c(t) , εk(t) ≡ k̂(t)−k(t)

k(t) . 28

Far from the steady state

0 5 10 15
Time(t)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Capital: k(t)

k(t)
k(t)

0 5 10 15
Time(t)

0.025

0.020

0.015

0.010

0.005

0.000
Relative error: k(t)

0 5 10 15
Time(t)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Consumption: c(t)

c(t)
c(t)

0 5 10 15
Time(t)

0.003

0.002

0.001

0.000

0.001

0.002

0.003

Relative error: c(t)

1.80

1.85

1.00

1.02

• Pick X̂ = {0, 1, . . . , 9}
• No large T ∈ X̂ is required.

• Even for medium time horizons the solutions

do not violate TVC.

• Long-run errors do not impair the accuracy of

short run dynamics.

• Generalization errors are small.

29

Growing TFP

0 10 20 30 40 50
Time(t)

1

2

3

4

Capital: k(t)

k(t)
k(t)

0 10 20 30 40 50
Time(t)

0.005

0.000

0.005

0.010

0.015

0.020
Relative error: k(t)

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

Consumption: c(t)

c(t)
c(t)

0 10 20 30 40 50
Time(t)

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020
Relative error: c(t)

4.3

4.4

2.50

2.55

2.60

• Pick same X̂ but now g = 0.02.

• Choose k(t; θ) = eφtNN(t; θNN) where

θ ≡ {φ, θNN} ∈ Θ is the coefficient vector

• Here we used economic intuition of problem to

design the H(Θ) to generalize better.

• Non-stationary but can figure out the BGP.

• Learns the growth rate: φ ≈ ln(1 + g)

• Economic insight leads to great extrapolation!

• It works very well even in the presence of

misspecifation.

Linear growth

30

The neoclassical growth model

with multiple steady states

Sequential formulation

max
{ct ,kt+1}∞t=0

∞∑
t=0

βtu(ct)

s.t. kt+1 = f (kt) + (1− δ)kt − ct

kt ≥ 0

0 = lim
T→∞

βTu′(cT)kT+1

k0 given.

1. Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) =∞, and β ∈ (0, 1).

2. “Butterfly production function”: f (k) = amax{kα, b1k
α − b2}, α ∈ (0, 1):

• There is a kink in the production function at k∗ ≡
(

b2
b1−1

) 1
α .

• This problem has two steady states, k∗1 and k∗2 and their corresponding consumption levels c∗1 and c∗2 .

31

Results

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Capital: k(t)

k(t) : k0 = 0.50
k(t) : k0 = 1.00
k(t) : k0 = 3.00
k(t) : k0 = 4.00
k *

1
k *

2

0 10 20 30 40 50
Time(t)

0.3

0.4

0.5

0.6

0.7

0.8

Consumption: c(t)

c(t) : k0 = 0.50
c(t) : k0 = 1.00
c(t) : k0 = 3.00
c(t) : k0 = 4.00
c *

1
c *

2

1. Pick X̂ = {0, . . . , 30}, α = 1
3 , σ = 1, β = 0.9, g = 0.0, a = 0.5, b1 = 3, b2 = 2.5 and

k0 ∈ {0.5, 1.0, 3.0, 4.0}
2. Choose k(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |Θ| = 49.9K coefficients.

3. Fit using Adam optimizer.
32

Results: different initial conditions

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Capital: k(t)

k *
1

k *
2

0 10 20 30 40 50
Time(t)

0.3

0.4

0.5

0.6

0.7

0.8

Consumption: c(t)

c *
1

c *
2

• Different initial conditions in

k0 ∈ [0.5, 1.75] ∪ [2.75, 4].

• In the vicinity of k∗1 and k∗2 the paths converge

to the right steady-states.

• The implicit bias picks up the right path.

• Low generalization errors, even without

imposing the transversality condition.
Details

33

Recursive version of the

neoclassical growth model here

Recursive formulation (with a possible BGP)

Skipping the Bellman formulation and going to the first order conditions in the state space , i.e., (k, z)

u′(c(k , z)) = βu′(c(k ′(k , z), z ′))
[
z ′1−αf ′(k ′(k, z)) + 1− δ

]
k ′(k , z) = z1−αf (k) + (1− δ)k − c(k, z)

z ′ = (1 + g)z

k ′ ≥ 0

0 = lim
T→∞

βTu′(cT)kT+1 ∀(k0, z0) ∈ X

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) =∞, and β ∈ (0, 1).

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP z .

34

Interpolation problem: without transversality condition

• A set of points X̂ = {k1, . . . , kNk
} × {z1, . . . , zNz}.

• A family of over-parameterized functions k ′(·, ·; θ) ∈ H(Θ).

• Use the feasibility condition and define c(k , z ; k ′) ≡ z1−αf (k) + (1− δ)k − k ′(k , z).

In practice we minimize the Euler residuals:

min
θ∈Θ

1

|X̂ |
∑

(k,z)∈X̂


u′
(
c
(
k , z ; k ′(.; θ)

))
u′
(
c
(
k ′(k , z ; θ), (1 + g)z ; k ′(.; θ)

)) − β [((1 + g)z)1−α f ′ (k ′(k, z ; θ)) + 1− δ
]

︸ ︷︷ ︸
Euler residual



2

35

Interpolation problem: without the transversality condition

• This minimization does not contain the transversality condition.

• Without the transversality condition it has more than one minima.

• No explicit norm minimization.

• Does the implicit bias weed out the solutions that violate the transversality condition? Yes

• Intuition: The solutions that violate the transversality condition are “bigger” than those don not

violate it.

Let’s analyze this more rigorously.

36

Interpolation formulation: min-norm mental model

min
k′∈H

‖k ′‖S

s.t. u′
(
c
(
k , z ; k ′

))
= βu′

(
c
(
k ′(k , z), (1 + g)z ; k ′

))
×[

((1 + g)z)1−αf ′(k ′(k , z)) + 1− δ
]

for (k, z) ∈ X̂

0 = lim
T→∞

βTu′(c(T))k(T + 1) for all (k0, z0) ∈ X

(26)

(27)

(28)

where

c(k , z ; k ′) ≡ z1−αf (k) + (1− δ)k − k ′(k, z)

37

Is the transversality condition necessary? Case of g = 0, z = 1

2 4 6 8 10
Capital(k)

2

4

6

8

10 k′(k): Violating TVC
k ′(k)
45 degree line

• The solutions that violate the transversality condition are above the one that do not.

• They have bigger derivatives. Therefore, they have bigger norms:

0 ≤ ‖k ′‖S < ‖k̃ ′‖S . (29)

38

Min-norm formulation: redundancy of transversality condition

We can drop the transversality condition:

min
k′∈H

‖k ′‖S

s.t. u′
(
c
(
k , z ; k ′

))
= βu′

(
c
(
k ′(k, z), (1 + g)z ; k ′

))
×[

((1 + g)z)1−αf ′(k ′(k , z)) + 1− δ
]

for (k, z) ∈ X̂

In practice, given X̂ , we directly implement this as k ′(·, ·; θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|X̂ |
∑

(k,z)∈X̂

 u′
(
c
(
k , z ; k ′(.; θ)

))
u′
(
c
(
k ′(k, z ; θ), (1 + g)z ; k ′(.; θ)

)) − β [((1 + g)z)1−α f ′ (k ′(k, z ; θ)) + 1− δ
]

2

39

Results: one initial condition

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

Capital: k(t)

k(t)
k(t)
Xtrain

0 10 20 30 40 50
Time(t)

0.00

0.01

0.02

0.03

0.04

0.05

Relative error: k(t)

Extrapolation
Interpolation

0 10 20 30 40 50
Time(t)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Consumption: c(t)

c(t)
c(t)

0 10 20 30 40 50
Time(t)

0.06

0.04

0.02

0.00

0.02

Relative error: c(t)

Extrapolation
Interpolation

1.70

1.75

0.96

0.98

1.00

• Pick X̂ = [0.8, 2.5]× {1} and k0 = 0.4 6∈ X̂ is

“extrapolation” α = 1
3 , σ = 1, β = 0.9.

• Choose k ′(k , z ; θ) = NN(k, z ; θ) where “NN”

has 4 hidden layers of 128 nodes. |Θ| = 49.9K

coefficients.

• Fit using L-BFGS and PyTorch in just a few

seconds.

• Low generalization errors, even without

imposing transversality condition.

For all k ∈ X

40

Far from the steady state

0 5 10 15
Time(t)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Capital: k(t)

k(t)
k(t)
Xtrain

0 5 10 15
Time(t)

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00
Relative error: k(t)

Extrapolation
Interpolation

0 5 10 15
Time(t)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Consumption: c(t)

c(t)
c(t)

0 5 10 15
Time(t)

0.02

0.01

0.00

0.01

Relative error: c(t)

Extrapolation
Interpolation

1.50

1.55

0.90

0.92

• Pick X̂ = [0.8, 1.5] , k∗ /∈ [0.8, 1.5].

• A local grid around the k0 is enough.

• Accurate solutions in the interpolation region.

• Generalization errors are not bad.

41

Growing TFP

0 10 20 30 40 50
Time(t)

1

2

3

4

Capital: k(t)

k(t)
k(t)

0 10 20 30 40 50
Time(t)

0.10

0.08

0.06

0.04

0.02

0.00

Relative error: k(t)

Extrapolation
Interpolation

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

Consumption: c(t)

c(t)
c(t)

0 10 20 30 40 50
Time(t)

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050
Relative error: c(t)

Extrapolation
Interpolation

3.3

3.4

1.90

1.95

• Pick X̂ = [0.8, 3.5]× [0.8, 1.8] but now

g = 0.02.

• Choose k ′(k , z ; θ) = zNN(k, kz ; θ).

• Here we used economic intuition to design the

H(Θ).

• Relative errors are very small inside the grid.

• Small generalization errors.

42

Are Euler and Bellman residuals

enough?

Euler residuals are not enough

• We picked a grid X̂ and approximated k ′(k) with an over-parameterized function.

• The approximate solutions do not violate the transversality condition.

• What happens if we approximate the consumption functions c(k) with an over-parameterized

function.

• We get an interpolating solution, i.e, very small Euler residuals.

• However, the solutions violate the transversality condition.

Intuition: consumption functions with low derivatives leads to optimal policies for capital with big

derivatives.

43

Small Euler residuals can be misleading

1.0 1.5 2.0 2.5
capital(k)

10 10

10 9

10 8

10 7

10 6

Euler residuals2: NN = k ′(k)

1.0 1.5 2.0 2.5
capital(k)

10 10

10 9

10 8

10 7

10 6

Euler residuals2: NN = c(k)

1.0 1.5 2.0 2.5
capital(k)

1.0

1.5

2.0

2.5

3.0

3.5
k ′(k): NN = k ′(k)

k ′(k)
45 degree line

1.0 1.5 2.0 2.5
capital(k)

1.0

1.5

2.0

2.5

3.0

3.5
k ′(k): NN = c(k)

k ′(k)
45 degree line

• Left panels: approximating k ′(z) with a deep

neural network.

• The solutions do not violate the TVC.

• k ′(k) intersects with 45◦ line at k∗ ≈ 2.

• Right panels: approximating c(k) with a deep

neural network.

• The solutions violate the TVC.

• k ′(k) intersects with 45◦ line at k̃max ≈ 30.

• Euler residuals are systematically lower.

44

Conclusion

Conclusion

• Solving functional equations with deep learning is an extension of collocation/interpolation methods.

• With massive over-parameterization, optimizers tend to choose those interpolating functions which

are not explosive and with smaller gradients (i.e., inductive bias).

• Over-parameterized solutions automatically fulfill forward-looking boundary conditions:

• Shedding light on the convergence of deep learning based solutions in dynamic problems in

macroeconomics.

• If we solve models with deep-learning without (directly) imposing long-run boundary conditions,

• Short/medium-run errors are small, and long-run errors after “we are all dead” are even manageable.

• Long-run errors do not affect transition dynamics even in the presence of non-stationarity and

steady-state multiplicity.

• Gives hope for solving high-dimensional models still disciplined by forward-looking economic assumptions.

45

Appendix

Sobolev semi-norms back

Let ψ1 and ψ2 be two differentiable function from a compact space X in R to R such that∫
X

∣∣∣∣dψ1

ds

∣∣∣∣2 ds > ∫
X

∣∣∣∣dψ2

ds

∣∣∣∣2 ds (30)

then

‖ψ1‖S > ‖ψ2‖S . (31)

Moreover, since ‖ · ‖S is a semi-norm, it satisfies the triangle inequality

‖ψ1 + ψ2‖S ≤ ‖ψ1‖S + ‖ψ2‖S . (32)

Recently shown the optimizers penalize Sobolev semi-norms: Ma, C., Ying, L. (2021)

46

Smooth interpolation

−1 0 1
x

1

2 DGP

Training data

Convex hull

−1 0 1
x

1

2 Parameters 49

Training data

Convex hull

−1 0 1
x

1

2 Parameters 541

Training data

Convex hull

−1 0 1
x

1

2 Parameters 12 K

Training data

Convex hull

47

Smooth interpolation: Comparison with cubic splines back

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Approximation

y: test

yf : train

yf

Cubic Spline

Convex hull

48

Smooth interpolation: A simple dynamical system

Consider the following system

Kt+1 = ηKt .

This system have the following solutions

K (t) = K0η
t .

• Without specifying the initial condition, K0, this is an ill-defined problem, i.e., there are infinity many

solutions.

• The solution to:

min
K∈H

‖K‖S

s.t. K (t + 1)− ηK (t) = 0 for t = t1, . . . , tN

is K (t) = 0.

49

Smooth interpolation: A simple dynamical system results

Three layers deep neural network, for N = 8, 32, and 128. Each trajectory corresponds to different

random initialization of the optimization procedure (seed).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.00

0.01 N=8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.00

0.01 N=32

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.00

0.01 N=128

50

Learning the growth rate

0.0195 0.0200 0.0205 0.0210 0.0215 0.0220
g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
g approximation: g

ĝ ≡ eφ̂ − 1.

The histogram for approximate growth rate over 100 seeds. back

51

Learning the growth rate

0 10 20 30 40 50
Time(t)

10 4

10 3

10 2

10 1

100

Capital: k(t)

k(t)
k(t)

0 10 20 30 40 50
Time(t)

0.004

0.002

0.000

0.002

0.004

0.006
Relative error: k(t)

1.75
2.00
2.25

back

52

Contiguous vs. dense grid

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5
Capital: k(t)

k(t)
k(t): Contiguous

k(t): train(Grid 1)

k(t): train(Grid 2)

0 10 20 30 40 50
Time(t)

0.001

0.000

0.001

0.002

0.003
Relative error: k(t)

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5
Capital: k(t)

k(t)
k(t): Contiguous

k(t): train(Grid 2)

0 10 20 30 40 50
Time(t)

0.010

0.005

0.000

0.005

0.010

0.015

0.020
Relative errors: k(t)

p(t): Contiguous

p(t): train(Grid 2)

1.95

2.00

1.95

2.00

• X̂ (Grid 1) = {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}, X̂ (Grid 2) = {0, 1, 4, 8, 12, 18, 24, 29}.
• Contiguous grid : X̂ = {0, 1, 2, ..., 29}. back

53

Misspecification of growth

0 10 20 30 40 50
Time(t)

1

2

3

4

Capital: k(t)

k(t)
k(t)

0 10 20 30 40 50
Time(t)

0.05

0.04

0.03

0.02

0.01

0.00
Relative error: k(t)

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

Consumption: c(t)

c(t)
c(t)

0 10 20 30 40 50
Time(t)

0.003

0.002

0.001

0.000

0.001

Relative error: c(t)

1.85
1.90

1.125
1.150

k(t; θ) = tNN(t; θ) + φ

back 54

Neoclassical growth with multiple steady-states: where things fail

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Capital: k(t)

k *
1

k *
2

0 10 20 30 40 50
Time(t)

0.3

0.4

0.5

0.6

0.7

0.8

Consumption: c(t)

c *
1

c *
2

back 55

Results: initial conditions over the state space

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Capital: k(t)

k(t)
k(t)
Xtrain

0 10 20 30 40 50
Time(t)

0.00

0.01

0.02

0.03

0.04

Relative error: k(t)

0 10 20 30 40 50
Time(t)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Consumption: c(t)

c(t)
c(c)

0 10 20 30 40 50
Time(t)

0.06

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02
Relative error: c(t)

2.1

2.2

1.100

1.125

• The solution has to satisfy the transversality

condition for all points in X

• limT→∞ β
Tu′(c(T))k(T + 1) = 0 ∀ k0 ∈ X

• Left: Three different initial condition for capital,

two of them outside X .

• Shaded regions: error range in capital and

consumption for 70 different initial condition in

[0.5, 4.0].

back

56

	Motivation
	Background: Deep learning for functional equations
	Linear asset pricing
	Neoclassical growth in sequence space
	The neoclassical growth model with multiple steady states
	Recursive version of the neoclassical growth model here
	Are Euler and Bellman residuals enough?
	Conclusion
	Appendix

