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Motivation



Motivation

• Dynamic models usually require economic conditions eliminating explosive solutions (e.g.,

transversality or no-bubble).

• These are variations of “boundary conditions” in ODEs and PDEs on forward-looking behavior.

• Deterministic, stochastic, sequential, recursive formulations all require conditions in some form.

• These forward-looking boundary conditions are the key limitation on increasing dimensionality:

• Otherwise, in sequential setups, we can easily solve high-dimensional initial value problems.

• In recursive models accurate solutions are required for arbitrary values of the state variables.

• Question: Can we avoid precisely calculating steady-state, BGP, and stationary distribution, which

are never reached, and still have accurate short/medium-run dynamics disciplined by these boundary

conditions?
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Contribution

• Show that deep learning solutions to many dynamic forward-looking models automatically fulfill the

long-run boundary conditions we need (transversality and no-bubble).

• We show how to design the approximation using economic insight.

• Solve classic models with known solutions (asset pricing and neoclassical growth) and show excellent

short/medium term dynamics –even when non-stationary or with steady state multiplicity.

• Suggests these methods may solve high-dimensional problems while avoiding the key computational

limitation.

• We have to understand low-dimensional problems first.

• Intuition: DL has an “implicit bias” toward smooth and simple functions. Explosive solutions are not

smooth.

But first, what is a deep learning solution and the implicit bias?
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Background: Deep learning for

functional equations



Models as functional equations

Equilibrium conditions in economics can be written as functional equations:

• Take some function(s) ψ ∈ Ψ where ψ : X → Y (e.g., optimal policy and consumption function in

neoclassical growth model).

• Domain X could be state (e.g., capital) or time if sequential.

• The “model” is ` : Ψ × X → R (e.g., Euler residuals and feasibility condition).

• The solution is the root of the model (residuals operator), i.e., 0 ∈ R, at each x ∈ X (e.g., optimal

policy is the root of the Euler over the space of capital).

Then a solution is an ψ∗ ∈ Ψ where `(ψ∗, x) = 0 for all x ∈ X .

3



Example: one formulation of neoclassical growth

An example of a recursive case:

• Domain: x =
[
k
]

and X = R+.

• Solve for the optimal policy k ′(·) and consumption function c(·): So ψ : R→ R2 and Y = R2
+.

• Residuals are the Euler equation and feasibility condition, so R = R2:

`(
[
k ′(·) c(·)

]
︸ ︷︷ ︸

≡ψ

, k︸︷︷︸
≡x

) =

[
u′(c(k))− βu′(c(k ′(k))) (f ′(k ′(k)) + 1− δ)

f (k)− c(k)− k ′(k) + (1− δ)k

]
︸ ︷︷ ︸

model

• Finally, ψ∗ = [k ′(·), c(·)] is a solution if it has zero residuals on domain X .
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Classical solution method for functional equations

1. Pick finite set of N points X̂ ⊂ X (e.g., a grid).

2. Choose approximation ψ̂(·; θ) ∈ H(Θ) with coefficients Θ ⊆ RM (e.g., Chebyshev polynomials).

3. Fit with nonlinear least-squares

min
θ∈Θ

∑
x∈X̂

`(ψ̂(·; θ), x)2

If θ ∈ Θ is such that `(ψ̂(·; θ), x) = 0 for all x ∈ X̂ we say it interpolates X̂ .

4. The goal is to have good generalization:

• The approximate function is close to the solution outside of X̂ .

• That is ψ̂(x ; θ) ≈ ψ∗(x) for x /∈ X̂ .
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A deep learning approach

• Deep neural networks are highly-overparameterized functions designed for good generalization.

• Number of coefficients much larger than the grid points (M � N).

• Example: one layer neural network, ψ̂ : RQ → R:

ψ̂(x ; θ) = W2 · σ (W1 · x + b1) + b2

• W1 ∈ RP×Q , b1 ∈ RP×1, W2 ∈ R1×P , and b2 ∈ R.

• σ(·) is a nonlinear function applied element-wise (e.g., max{·, 0}).

• Θ ≡ {b1,W1, b2,W2} are the coefficients, in this example M = PQ + P + P + 1.

• Making it “deeper” by adding another “layer”:

ψ̂(x ; θ) ≡W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3.

• Architecture of the neural networks can be flexibly informed by the economic insight and theory.

However, not crucial for this paper.
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Deep learning optimizes in a space of functions: which ψ̂?

• Since M � N, it is possible for ψ̂ to interpolate and the objective value will be ≈ 0.

• Since M � N there are many solutions (e.g., θ1 and θ2),

• Agree on the grid points: ψ̂(x ; θ1) ≈ ψ̂(x ; θ2) for x ∈ X̂ .

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
ψ̂∈H

∑
x∈X̂

`(ψ̂, x)2

But which ψ̂?
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Deep learning and interpolation

• For M large enough, optimizers tend to converge to unique smooth and simple ψ̂ (w.r.t to some

norm ‖ · ‖S). Unique both in X̂ and X . There is a bias toward a specific class of solutions.

• How to interpret: interpolating solutions for some functional norm ‖ · ‖S

min
ψ̂∈H
||ψ̂||S

s.t. `(ψ̂, x) = 0, for x ∈ X̂

• CS and literature refers to this as the inductive bias or implicit bias: optimization process is biased

toward particular ψ̂

• Small values of ‖ · ‖S corresponds to flat solutions with small gradients.

• Characterizing ‖ · ‖S (e.g., Sobolev ) is an active research area in CS at the heart of deep learning theory.

Examples
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Deep learning and interpolation in practice

Reminder: in practice we solve

min
θ∈Θ

∑
x∈X̂

`
(
ψ̂(·; θ), x

)2

• The smooth interpolation is imposed implicitly through the optimization process.

• No explicit norm minimization or penalization is required.

In this paper: we describe how (and when) the minψ̂∈H ||ψ̂||S solutions are also the ones which

automatically fulfill transversality and no-bubble conditions.

• They are disciplined by long-run boundary conditions. Therefore, we can obtain accurate

short/medium-run dynamics.
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Outline

To explore how we can have accurate short-run dynamics, we show deep learning solutions to

1. Classic linear-asset pricing model.

2. Sequential formulation of the neoclassical growth model.

3. Sequential neoclassical growth model with multiple steady states.

4. Recursive formulation of the neoclassical growth model.

5. Non-stationarity, such as balanced growth path.
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Linear asset pricing



Sequential formulation

• Dividends, y(t), y0 as given, and follows the process:

y(t + 1) = c + (1 + g)y(t)

• Writing as a linear state-space model with x(t + 1) = Ax(t) and y(t) = Gx(t) and

x(t) ≡
[
1 y(t)

]>
,A ≡

[
1 0

c 1 + g

]
,G ≡

[
0 1

]
• “Fundamental” price given x(t) is PDV with β ∈ (0, 1) and β(1 + g) < 1

pf (t) ≡
∞∑
j=0

βjy(t + j) = G (I − βA)−1x(t).
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Recursive formulation

With standard transformation, all solutions pf (t) fulfill the recursive equations

p(t) = Gx(t) + βp(t + 1) (1)

x(t + 1) = Ax(t) (2)

0 = lim
T→∞

βTp(T ) (3)

x0 given (4)

That is, a system of two difference equations with one boundary and one initial condition.

• The boundary condition (3) is an condition necessary for the problem to be well-posed and have a

unique solution.

• It ensures that p(t) = pf (t) by imposing long-run boundary condition.

• But without this assumption there can be “bubbles” with p(t) 6= pf (t), only fulfilling (1) and (2).

• Intuition: system of {p(t), x(t)} difference equations requires total of two boundaries or initial values

to have a unique solution.
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Solutions without no-bubble condition

Without the no-bubble condition:

• Solutions in this deterministic asset pricing model are of the form:

p(t) = pf (t) + ζ β−t . (5)

• For any ζ ≥ 0. The initial condition x(0) determines pf (t).

• There are infinitely many solutions.

• The no-bubble condition chooses ζ = 0.
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Interpolation problem: without no-bubble condition

• A set of points in time X̂ = {t1, . . . , tmax}.
• A family of over-parameterized functions p(·; θ) ∈ H(Θ).

• Generate x(t) using the law of motion and x(0), equation (2).

In practice we minimize the residuals of the recursive form for the price:

min
θ∈Θ

1

|X̂ |
∑
t∈X̂

[p(t; θ)− Gx(t)− βp(t + 1; θ)]2 (6)

• This minimization does not contain no-bubble condition. It has infinitely many minima.

• Does the implicit bias of over-parameterized interpolation weed out the bubbles? Yes.

• Intuition: bubble solutions are explosive, i.e., big functions with big derivatives.

Let’s analyze this more rigorously.
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Interpolation formulation: min-norm mental model

The min-norm interpretation (mental model) is:

min
p∈H

‖p‖S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ X̂

0 = lim
T→∞

βTp(T )

(7)

(8)

(9)

Where x(t) for t ∈ X̂ is defined by x(0) initial condition and recurrence x(t + 1) = Ax(t) in (2)

• The minimization of norm ‖p‖S is the “inductive bias” toward particular solutions for t ∈ [0,∞] \ X̂ .
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Is the no-bubble condition still necessary?

• To analyze, drop the no-bubble condition and examine the class of solutions.

• In this case, we know the interpolating solutions to (8) without imposing (9)

p(t) = pf (t) + ζβ−t (10)

• Applying the triangle inequality

‖pf ‖S ≤ ‖p‖S ≤ ‖pf ‖S + ζ ‖β−t‖S (11)

• Relative to classic methods the “deep learning” problem now has a new objective, minimizing ‖p‖S .

• That is, p(t) = pf (t), the solution fulfills the no-bubble condition, and (9) is satisfied at the optima.

• The new objective of minimizing the norm, makes the no-bubble condition redundant.
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Min-norm norm formulation: redundancy of no-bubble condition

Given the no-bubble condition is automatically fulfilled, could solve the following given some H and

compare to pf (t)

min
p∈H

‖p‖S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ X̂

(12)

(13)

A reminder: in practice, given the X̂ , we directly implement this as p(·; θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|X̂ |
∑
t∈X̂

[p(t; θ)− Gx(t)− βp(t + 1; θ)]2 (14)

Since law of motion is deterministic, given x(0) we generate x(t) with x(t + 1) = Ax(t) for t ∈ X̂

• The X̂ does not need to be contiguous and |X̂ | may be relatively small.

• Most important: no steady state calculated, nor large T ∈ X̂ required. 17



Results
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Time(t)
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0.95
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1.05

Prices: p(t)

pf(t)
p(t)

0 10 20 30 40 50
Time(t)

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000
Relative errors: p(t)

0.985

0.990

1. Pick X̂ = {0, 1, 2, ..., 29} and t > 29 is “extrapolation” where c = 0.01, g = −0.1, and y0 = 0.8.

2. Choose p(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |Θ| = 49.9K coefficients.

3. Fit using L-BFGS and PyTorch in just a few seconds. Could use Adam/SGD/etc.

4. Low generalization errors, even without imposing no-bubble condition.

Relative errors define as εp(t) ≡ p̂(t)−p(t)
p(t) . 18



Contiguous vs. sparse grid
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0.985

0.990

0.985

0.990

• Pick

X̂ (Grid 1) = {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}
and X̂ (Grid 2) = {0, 1, 4, 8, 12, 18, 24, 29}.

• Contrary to popular belief, can use less grid

points relative to alternatives.

• The solutions are very close (with different

seeds)

• Hypothesis verified, the solutions agree on the

seen and unseen grid points.
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Growing dividends
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• Pick same X̂ but now c = 0.0, g = 0.02.

• Choose p(t; θ) = eφtNN(t; θ1) where θ ≡ {φ, θ1} ∈ Θ are the coefficients.

• Here we used economic intuition of problem to design H(Θ) to generalize better.

• Non-stationary but can figure out the growth.

• Bonus: learns the growth rate: φ ≈ ln(1 + g) and even extrapolates well! Growth rate
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Neoclassical growth in sequence

space



Sequential formulation

max
{c(t),k(t+1)}∞t=0

∞∑
t=0

βtu (c(t)) (15)

s.t. k(t + 1) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t) (16)

z(t + 1) = (1 + g)z(t) (17)

k(t) ≥ 0 (18)

0 = lim
T→∞

βTu′ (c(T )) k(T + 1) (19)

k0, z0 given (20)

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) =∞, and β ∈ (0, 1).

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP zt .

• Skip standard steps. . . Euler equation: u′(c(t)) = βu′(c(t + 1))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
.
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Interpolation problem: without transversality condition

• A set of points in time X̂ = {t1, . . . , tmax}.
• A family of over-parameterized functions k(·; θ) ∈ H(Θ).

• Generate z(t) using the law of motion and z(0), equations (17).

• Use the feasibility condition and define c(t; k) ≡ z(t)1−αf
(
k(t)

)
+ (1− δ)k(t)− k(t + 1).

In practice we minimize the Euler and initial conditions residuals:

min
θ∈Θ

(
1

|X̂ |
∑
t∈X̂

λ1

[
u′
(
c(t; k(·, θ))

)
u′
(
c(t + 1; k(·; θ))

) − β[z(t + 1)1−αf ′(k(t + 1; θ)) + 1− δ
]

︸ ︷︷ ︸
Euler residuals

]2

+λ2

[
k(0; θ)− k0︸ ︷︷ ︸

Initial condition residuals

]2)

• λ1 and λ2 positive weights.
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Interpolation problem: without transversality condition

• This minimization does not contain the transversality condition.

• Without the transversality condition it has infinitely many minima.

• No explicit norm minimization.

• Does the implicit bias weed out the solutions that violate the transversality condition? Yes.

• Intuition: The solutions that violate the transversality condition are big functions with big

derivatives.

Let’s analyze this more rigorously.
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Interpolation formulation: min-norm mental model

min
k∈H

‖k‖S

s.t. u′(c(t; k)) = βu′(c(t + 1; k))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ X̂

k(0) = k0

0 = lim
T→∞

βTu′(c(T ; k))k(T + 1)

(21)

(22)

(23)

(24)

c(t; k) ≡ z(t)1−αf
(
k(t)

)
+ (1− δ)k(t)− k(t + 1) (25)

Where z(t) for t ∈ X̂ is defined by z(0) initial condition and recurrence z(t + 1) = (1 + g)z(t).
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Is the transversality condition still necessary? Case of g = 0, z = 1

Sketch of the proof:

• Let {k(t), c(t)} be the sequence of optimal solution.

• Let {k̃(t), c̃(t)} be a sequence of solution that satisfy all the equations except transversality

condition (24).

1. c̃(t) approaches zero.

2. k̃(t) approaches k̃max ≡ δ
1

α−1 , and k(t) approaches k∗ ≡
(
β−1+δ−1

α

) 1
α−1

.

3. Both k̃(t) and k(t) are monotone. k̃max � k∗. Therefore,

0 ≤ ‖k‖S ≤ ‖k̃‖S .
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Is the transversality condition still necessary? Case of g = 0, z = 1

Example: the violation of the transversality condition.

0 50 100
Time(t)

0
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Capital

k(t)
k(t)
k *

kmax

0 50 100
Time(t)

0.0

0.2

0.4

0.6

0.8

1.0

Consumption

c(t)
c(t)
c *

0 50 100
Time(t)

101

103

105

107

Marginal utility of consumption

u′(c(t))
u′(c(t))
u′(c * )

• The solution that violate the transversality are associated with “big” capital path.

• The new objective of minimizing the norm, makes the transversality condition redundant.
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Min-norm formulation: redundancy of transversality condition

Given the transversality condition is automatically fulfilled, one could solve

min
k∈H

‖k‖S

s.t. u′(c(t; k)) = βu′(c(t + 1; k))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ X̂

k(0) = k0

Reminder: in practice we solve

min
θ∈Θ

(
1

|X̂ |
∑
t∈X̂

λ1

[
u′
(
c(t; k(·, θ))

)
u′
(
c(t + 1; k(·; θ))

) − β[z(t + 1)1−αf ′(k(t + 1; θ)) + 1− δ
]]2

+λ2

[
k(0; θ)− k0︸ ︷︷ ︸

Initial condition residuals

]2)

• |X̂ | may be relatively small, no steady state calculated, nor large T ∈ X̂ required. Sparse Grids 27



Results
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Relative errors: k(t) and c(t)
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1.950
1.975

1. Pick X̂ = {0, 1, ..., 30} and t > 30 is “extrapolation” α = 1
3 , σ = 1, β = 0.9, g = 0.0, and k0 = 0.4

2. Choose k(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |Θ| = 49.9K coefficients.

3. Fit using L-BFGS in just a few seconds. Comparing with value function iteration solution.

4. Low generalization errors, even without imposing the transversality condition. Small k0 .

Relative errors defined as εc(t) ≡ ĉ(t)−c(t)
c(t) , εk(t) ≡ k̂(t)−k(t)

k(t) . 28



Far from the steady state
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• Pick X̂ = {0, 1, . . . , 9}
• No large T ∈ X̂ is required.

• Even for medium time horizons the solutions

do not violate TVC.

• Long-run errors do not impair the accuracy of

short run dynamics.

• Generalization errors are small.
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Growing TFP
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• Pick same X̂ but now g = 0.02.

• Choose k(t; θ) = eφtNN(t; θNN) where

θ ≡ {φ, θNN} ∈ Θ is the coefficient vector

• Here we used economic intuition of problem to

design the H(Θ) to generalize better.

• Non-stationary but can figure out the BGP.

• Learns the growth rate: φ ≈ ln(1 + g)

• Economic insight leads to great extrapolation!

• It works very well even in the presence of

misspecifation.

Linear growth
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The neoclassical growth model

with multiple steady states



Sequential formulation

max
{ct ,kt+1}∞t=0

∞∑
t=0

βtu(ct)

s.t. kt+1 = f (kt) + (1− δ)kt − ct

kt ≥ 0

0 = lim
T→∞

βTu′(cT )kT+1

k0 given.

1. Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) =∞, and β ∈ (0, 1).

2. “Butterfly production function”: f (k) = amax{kα, b1k
α − b2}, α ∈ (0, 1):

• There is a kink in the production function at k∗ ≡
(

b2
b1−1

) 1
α .

• This problem has two steady states, k∗1 and k∗2 and their corresponding consumption levels c∗1 and c∗2 .
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Results
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1. Pick X̂ = {0, . . . , 30}, α = 1
3 , σ = 1, β = 0.9, g = 0.0, a = 0.5, b1 = 3, b2 = 2.5 and

k0 ∈ {0.5, 1.0, 3.0, 4.0}
2. Choose k(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |Θ| = 49.9K coefficients.

3. Fit using Adam optimizer.
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Results: different initial conditions
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• Different initial conditions in

k0 ∈ [0.5, 1.75] ∪ [2.75, 4].

• In the vicinity of k∗1 and k∗2 the paths converge

to the right steady-states.

• The implicit bias picks up the right path.

• Low generalization errors, even without

imposing the transversality condition.
Details
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Recursive version of the

neoclassical growth model here



Recursive formulation (with a possible BGP)

Skipping the Bellman formulation and going to the first order conditions in the state space , i.e., (k, z)

u′(c(k , z)) = βu′(c(k ′(k , z), z ′))
[
z ′1−αf ′(k ′(k, z)) + 1− δ

]
k ′(k , z) = z1−αf (k) + (1− δ)k − c(k, z)

z ′ = (1 + g)z

k ′ ≥ 0

0 = lim
T→∞

βTu′(cT )kT+1 ∀(k0, z0) ∈ X

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) =∞, and β ∈ (0, 1).

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP z .
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Interpolation problem: without transversality condition

• A set of points X̂ = {k1, . . . , kNk
} × {z1, . . . , zNz}.

• A family of over-parameterized functions k ′(·, ·; θ) ∈ H(Θ).

• Use the feasibility condition and define c(k , z ; k ′) ≡ z1−αf (k) + (1− δ)k − k ′(k , z).

In practice we minimize the Euler residuals:

min
θ∈Θ

1

|X̂ |
∑

(k,z)∈X̂


u′
(
c
(
k , z ; k ′(.; θ)

))
u′
(
c
(
k ′(k , z ; θ), (1 + g)z ; k ′(.; θ)

)) − β [((1 + g)z)1−α f ′ (k ′(k, z ; θ)) + 1− δ
]

︸ ︷︷ ︸
Euler residual



2
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Interpolation problem: without the transversality condition

• This minimization does not contain the transversality condition.

• Without the transversality condition it has more than one minima.

• No explicit norm minimization.

• Does the implicit bias weed out the solutions that violate the transversality condition? Yes

• Intuition: The solutions that violate the transversality condition are “bigger” than those don not

violate it.

Let’s analyze this more rigorously.
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Interpolation formulation: min-norm mental model

min
k′∈H

‖k ′‖S

s.t. u′
(
c
(
k , z ; k ′

))
= βu′

(
c
(
k ′(k , z), (1 + g)z ; k ′

))
×[

((1 + g)z)1−αf ′(k ′(k , z)) + 1− δ
]

for (k, z) ∈ X̂

0 = lim
T→∞

βTu′(c(T ))k(T + 1) for all (k0, z0) ∈ X

(26)

(27)

(28)

where

c(k , z ; k ′) ≡ z1−αf (k) + (1− δ)k − k ′(k, z)
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Is the transversality condition necessary? Case of g = 0, z = 1

2 4 6 8 10
Capital(k)

2

4

6

8

10 k′(k): Violating TVC
k ′(k)
45 degree line

• The solutions that violate the transversality condition are above the one that do not.

• They have bigger derivatives. Therefore, they have bigger norms:

0 ≤ ‖k ′‖S < ‖k̃ ′‖S . (29)
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Min-norm formulation: redundancy of transversality condition

We can drop the transversality condition:

min
k′∈H

‖k ′‖S

s.t. u′
(
c
(
k , z ; k ′

))
= βu′

(
c
(
k ′(k, z), (1 + g)z ; k ′

))
×[

((1 + g)z)1−αf ′(k ′(k , z)) + 1− δ
]

for (k, z) ∈ X̂

In practice, given X̂ , we directly implement this as k ′(·, ·; θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|X̂ |
∑

(k,z)∈X̂

 u′
(
c
(
k , z ; k ′(.; θ)

))
u′
(
c
(
k ′(k, z ; θ), (1 + g)z ; k ′(.; θ)

)) − β [((1 + g)z)1−α f ′ (k ′(k, z ; θ)) + 1− δ
]

2
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Results: one initial condition
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• Pick X̂ = [0.8, 2.5]× {1} and k0 = 0.4 6∈ X̂ is

“extrapolation” α = 1
3 , σ = 1, β = 0.9.

• Choose k ′(k , z ; θ) = NN(k, z ; θ) where “NN”

has 4 hidden layers of 128 nodes. |Θ| = 49.9K

coefficients.

• Fit using L-BFGS and PyTorch in just a few

seconds.

• Low generalization errors, even without

imposing transversality condition.

For all k ∈ X
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Far from the steady state
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• Pick X̂ = [0.8, 1.5] , k∗ /∈ [0.8, 1.5].

• A local grid around the k0 is enough.

• Accurate solutions in the interpolation region.

• Generalization errors are not bad.
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Growing TFP
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• Pick X̂ = [0.8, 3.5]× [0.8, 1.8] but now

g = 0.02.

• Choose k ′(k , z ; θ) = zNN(k, kz ; θ).

• Here we used economic intuition to design the

H(Θ).

• Relative errors are very small inside the grid.

• Small generalization errors.
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Are Euler and Bellman residuals

enough?



Euler residuals are not enough

• We picked a grid X̂ and approximated k ′(k) with an over-parameterized function.

• The approximate solutions do not violate the transversality condition.

• What happens if we approximate the consumption functions c(k) with an over-parameterized

function.

• We get an interpolating solution, i.e, very small Euler residuals.

• However, the solutions violate the transversality condition.

Intuition: consumption functions with low derivatives leads to optimal policies for capital with big

derivatives.
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Small Euler residuals can be misleading
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• Left panels: approximating k ′(z) with a deep

neural network.

• The solutions do not violate the TVC.

• k ′(k) intersects with 45◦ line at k∗ ≈ 2.

• Right panels: approximating c(k) with a deep

neural network.

• The solutions violate the TVC.

• k ′(k) intersects with 45◦ line at k̃max ≈ 30.

• Euler residuals are systematically lower.
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Conclusion



Conclusion

• Solving functional equations with deep learning is an extension of collocation/interpolation methods.

• With massive over-parameterization, optimizers tend to choose those interpolating functions which

are not explosive and with smaller gradients (i.e., inductive bias).

• Over-parameterized solutions automatically fulfill forward-looking boundary conditions:

• Shedding light on the convergence of deep learning based solutions in dynamic problems in

macroeconomics.

• If we solve models with deep-learning without (directly) imposing long-run boundary conditions,

• Short/medium-run errors are small, and long-run errors after “we are all dead” are even manageable.

• Long-run errors do not affect transition dynamics even in the presence of non-stationarity and

steady-state multiplicity.

• Gives hope for solving high-dimensional models still disciplined by forward-looking economic assumptions.
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Appendix



Sobolev semi-norms back

Let ψ1 and ψ2 be two differentiable function from a compact space X in R to R such that∫
X

∣∣∣∣dψ1

ds

∣∣∣∣2 ds > ∫
X

∣∣∣∣dψ2

ds

∣∣∣∣2 ds (30)

then

‖ψ1‖S > ‖ψ2‖S . (31)

Moreover, since ‖ · ‖S is a semi-norm, it satisfies the triangle inequality

‖ψ1 + ψ2‖S ≤ ‖ψ1‖S + ‖ψ2‖S . (32)

Recently shown the optimizers penalize Sobolev semi-norms: Ma, C., Ying, L. (2021)

46



Smooth interpolation
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Smooth interpolation: Comparison with cubic splines back
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Smooth interpolation: A simple dynamical system

Consider the following system

Kt+1 = ηKt .

This system have the following solutions

K (t) = K0η
t .

• Without specifying the initial condition, K0, this is an ill-defined problem, i.e., there are infinity many

solutions.

• The solution to:

min
K∈H

‖K‖S

s.t. K (t + 1)− ηK (t) = 0 for t = t1, . . . , tN

is K (t) = 0.
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Smooth interpolation: A simple dynamical system results

Three layers deep neural network, for N = 8, 32, and 128. Each trajectory corresponds to different

random initialization of the optimization procedure (seed).
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Learning the growth rate

0.0195 0.0200 0.0205 0.0210 0.0215 0.0220
g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
g approximation: g

ĝ ≡ eφ̂ − 1.

The histogram for approximate growth rate over 100 seeds. back
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Learning the growth rate
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Contiguous vs. dense grid
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• X̂ (Grid 1) = {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}, X̂ (Grid 2) = {0, 1, 4, 8, 12, 18, 24, 29}.
• Contiguous grid : X̂ = {0, 1, 2, ..., 29}. back
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Misspecification of growth
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k(t; θ) = tNN(t; θ) + φ
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Neoclassical growth with multiple steady-states: where things fail
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Results: initial conditions over the state space
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• The solution has to satisfy the transversality

condition for all points in X

• limT→∞ β
Tu′(c(T ))k(T + 1) = 0 ∀ k0 ∈ X

• Left: Three different initial condition for capital,

two of them outside X .

• Shaded regions: error range in capital and

consumption for 70 different initial condition in

[0.5, 4.0].

back
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