Exploiting Symmetry in High-Dimensional Dynamic Programming

Mahdi Ebrahimi Kahou¹ Jesús Fernández-Villaverde² Jesse Perla² Arnav Sood³ April 6, 2025

¹Bowdoin College

³University of Pennsylvania

³University of British Columbia, Vancouver School of Economics

⁴Carnegie Mellon University

Motivation

- Most dynamic models in macro (and other fields) deal with either:
 - Representative agent or few agents.
 - A continuum of agents.
- However, many models of interest in macro (IO and trade) deal with finite (but large) number of agents
 - Industry dynamics with many firms, agents and industries, even models with networks.
- These models are becoming increasingly popular, but:
 - They pose computational challenges as we add more agents.
 - No (non-heuristic) algorithm exists providing global solutions in the presence of aggregate uncertainty.

Challenges: the curse of dimensionality in equilibrium models

Three components to the curse of dimensionality with many agents (Bellman, 1958, p. IX)

- 1. The cardinality of the state space is enormous.
 - With 266 state variables, with 2 values per state (zero and one), we have more arrangements (2²⁶⁶) than the estimated number of protons in the universe.
- 2. With idiosyncratic and aggregate shocks we need to calculate high-dimensional conditional expectations.
- 3. Finding equilibrium paths to the steady-state (ergodic distributions) are extremely hard in high-dimensions.

Contribution I

Inspired by economic theory, providing novel method for **globally** solving high-dimensional heterogeneous agent models with **aggregate shocks** which relies on:

- A symmetry present in many heterogeneous agent models, i.e., exchangeability of agents.
 - Example: In general equilibrium models the Walrasian auctioneer removes indices.
 - The solution must be faithful to this symmetry caused by this exchangeability of agents.

Contribution II

- Concentration of measures, something that resembles the law of large numbers to deal with conditional expectations.
 - More agents makes it easier to forecast the evolution of distributions.
 - Conditional on the aggregate shock, we can use something similar law of large numbers to calculate expectations.
- We show how to implement the symmetry when using deep neural networks.

With these we globally solve a model with 10,000 agents which was not possible before.

Literature Review

- Deep learning as a functional approximation: Maliar et al. (2019), Fernández-Villaverde et al. (2022), Duarte (2018), Azinovic et al. (2022), Han et al. (2021) (a mean-field approach).
- Symmetry in statistics and machine learning: Bloem-Reddy and Teh (2020), Zaheer et al. (2017), and Yarotsky (2018).
- Symmetry in computer science (MDP/RL): Ravindran and Barto (2001) and Narayanamurthy and Ravindran (2008), van der Pol et al. (2020).
- Symmetry in micro and games: Jovanovic and Rosenthal (1988), Hartford et al. (2016)

Background: Deep learning for functional equations

Equilibrium conditions as functional equations

Most theoretical models in economics with equilibrium conditions can be written as functional equations:

- Take some function(s) $\psi \in \Psi$ where $\psi : \mathcal{X} \to \mathcal{Y}$ (e.g. asset price, investment choice, best-response).
- ullet Domain ${\mathcal X}$ could be state (e.g. dividends, capital, opponents state) or time if sequential.
- The "model" is $\ell: \Psi \times \mathcal{X} \to \mathcal{R}$ (e.g., Euler and Bellman residuals, equilibrium FOCs).
- The solution is the root of the model (residuals operator), i.e., $\mathbf{0} \in \mathcal{R}$, at each $x \in \mathcal{X}$.

Then a solution is a $\psi^* \in \Psi$ where $\ell(\psi^*, x) = 0$ for all $x \in \mathcal{X}$. How do we find an approximate solution?

Classical solution method for functional equations

Quick review of collocation-like methods:

- 1. Pick finite set of D points $\hat{\mathcal{X}} \subset \mathcal{X}$ (e.g., a grid).
- 2. Choose approximation $\hat{\psi}(\cdot; \theta) \in \mathcal{H}(\Theta)$ with coefficients $\Theta \subseteq \mathbb{R}^M$ (e.g., Chebyshev polynomials).
- 3. Fit with nonlinear least-squares

$$\min_{\theta \in \Theta} \sum_{\mathbf{x} \in \hat{\mathcal{X}}} \ell(\hat{\psi}(\cdot; \theta), \mathbf{x})^2$$

If $\theta \in \Theta$ is such that $\ell(\hat{\psi}(\cdot;\theta),x) = 0$ for all $x \in \hat{\mathcal{X}}$ we say $\hat{\psi}(\cdot;\theta)$ interpolates $\hat{\mathcal{X}}$.

- 4. The goal is to have good **generalization**:
 - The approximate function is close to the solution outside of $\hat{\mathcal{X}}$.

Deep Neural Networks

Deep learning is **highly-overparameterized** $\mathcal{H}(\Theta)$ ($M \gg D$) designed for good generalization.

• Example: one layer neural network, $\hat{\psi}: \mathbb{R}^Q \to \mathbb{R}$:

$$\hat{\psi}(x;\theta) = W_2 \cdot \sigma (W_1 \cdot x + b_1) + b_2$$

- $W_1 \in \mathbb{R}^{P \times Q}$, $b_1 \in \mathbb{R}^{P \times 1}$, $W_2 \in \mathbb{R}^{1 \times P}$, and $b_2 \in \mathbb{R}$.
- $\sigma(\cdot)$ is a nonlinear function applied element-wise (e.g., $\max\{\cdot,0\}$).
- $\Theta \equiv \{b_1, W_1, b_2, W_2\}$ are the coefficients, in this example M = PQ + P + P + 1.
- Making it "deeper" by adding another "layer": $\hat{\psi}(x;\theta) \equiv W_3 \cdot \sigma(W_2 \cdot \sigma(W_1 \cdot x + b_1) + b_2) + b_3$.
- Very flexible to design $\mathcal{H}(\Theta)$ using economic insights (e.g., encode symmetry).
- Composing $\mathcal{H}(\Theta)$ from multiple function (e.g., deeper) tend to **generalize better** better in practice.

Over-parameterization and convergence

If the number of coefficients is much larger than the number of grid points $M \gg D$, there are many different sets of coefficients that achieve interpolation.

- What is going on?
 - Deep neural networks and their optimizers have an inherent implicit bias toward a unique class of interpolating solutions.
 - Figuring out this property is a very active field in computer science and optimization theory.
 - Converges to "simple" (flat) interpolating functions.
 - They have a built-in Occam's razor.
- Modern ML, uses high-dimensional non-convex optimizations. Does the initialization of the coefficients matter?

Application

How do we pick our application to show how all this works?

- In terms of application, there are two routes:
 - 1. Introducing a sophisticated application where the method "shines".
 - 2. Or, applying it to a well-known example.
- If I tell you about a sophisticated application, how do we know our "solution" method works?
- So we study a well-known example (with a twist).

Our application

A variation of the Lucas and Prescott (1971) model of investment under uncertainty with N firms.

Why?

- 1. Ljungqvist and Sargent (2018), pp. 226-228, use it to introduce recursive competitive equilibria.
- 2. Simple model that fits in one slide.
- 3. Under one parameterization, the model has a known Linear-Quadratic (LQ) solution, which gives us an exact benchmark.
- 4. By changing one parameter, the model is nonlinear, with **no known** solution. Our method handles the nonlinear case as easily as the LQ case with high accuracy.

Investment under uncertainty

- Industry consisting of N > 1 firms, each producing the same good.
- Firm of interest produces output x (x units of capital).
- Thus, the vector $X \equiv [X_1, \dots X_N]^{\top}$ is the production (or capital) of the whole industry.
- The inverse demand function for the industry is, for some $\nu \geq 1$ (this is our twist):

$$p(X) = 1 - \frac{1}{N} \sum_{i=1}^{N} X_i^{\nu}$$

- The firm does not consider the impact of its individual decisions on p(X).
- Due to adjustment frictions, investing u has a cost $\frac{\gamma}{2}u^2$.
- Law of motion for capital $x' = (1 \delta)x + u + \sigma w + \eta \omega$ where $w \sim \mathcal{N}(0, 1)$ an i.i.d. idiosyncratic shock, and $\omega \sim \mathcal{N}(0, 1)$ an i.i.d. aggregate shock, common to all firms.
- The firm chooses u to maximize $\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t \left(p(X)x \frac{\gamma}{2}u^2\right)\right]$.

Recursive problem

The recursive problem of the firm taking the exogenous policy $\hat{u}(\cdot, X)$ for all other firms as given is:

$$\begin{aligned} v(x,X) &= \max_{u} \left\{ p(X)x - \frac{\gamma}{2}u^2 + \beta \mathbb{E}\left[v(x',X')\right] \right\} \\ \text{s.t. } x' &= (1-\delta)x + u + \sigma w + \eta \omega \\ X'_i &= (1-\delta)X_i + \hat{u}(X_i,X) + \sigma W_i + \eta \omega, \quad \text{for } i \in \{1,...,N\} \end{aligned}$$

Take FOCs and equation using standard steps to write equilibrium as the LOM and Euler equation

$$\gamma u(X) = \beta \mathbb{E} \left[p(X') + \gamma (1 - \delta) u(X') \right]$$

Curse of dimensionality: a closer look

$$\gamma u(X) = \beta \mathbb{E} \left[p(X') + \gamma (1 - \delta) u(X') \right]$$

Let's say there are 1000 agents:

- 1. The domain of the functions of interest $u(\cdot)$ is 1000-dimensional.
- 2. The expectation operator $\mathbb{E}\left[\cdot\right]$ is a 1001-dimensional integral.
 - 1000 idiosyncratic shocks + 1 aggregate shock.
- 3. What about the stationarity of the solution and the transversality condition?
 - I will come back to this.

Symmetry and Permutation Invariant

General class of problems: A "big X, little x" dynamic programming

$$v(x,X) = \max_{u} \left\{ r(x,u,X) + \beta \mathbb{E} \left[v(x',X') \right] \right\}$$
s.t. $x' = g(x,u) + \sigma w + \eta \omega$

$$X' = G(X) + \Omega W + \eta \omega \mathbf{1}_{N}$$

- 1. x is the individual state of the agent.
- 2. X is a vector stacking the individual states of all of the N agents in the economy.
- 3. u is the control variable.
- 4. w is random innovation to the individual state, stacked in $W \sim \mathcal{N}(\mathbf{0}_N, \mathbf{I}_N)$ and where, w.l.o.g., $w = W_1$.
- 5. $\omega \sim \mathcal{N}(0,1)$ is a random aggregate innovation to all the individual states.

Permutation Groups

- A permutation matrix is a square matrix with a single 1 in each row and column and zeros everywhere else.
- Let S_N be the set of all n! permutation matrices of size $N \times N$. For example:

$$S_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

• Multiplying vector $v \in \mathbb{R}^N$ by $\pi \in S_N$ reorders elements of v

Permutation-invariant dynamic programming

Definition

A 'big X, little x' dynamic programming problem is a permutation-invariant dynamic programming problem if, for all $(x, X) \in \mathbb{R}^{N+1}$ and all permutations $\pi \in \mathcal{S}_N$

1. The reward function *r* is **permutation invariant**:

$$r(x, u, \pi X) = r(x, u, X)$$

2. The deterministic component of the law of motion for X is permutation equivariant:

$$G(\pi X) = \pi G(X)$$

3. The covariance matrix of the idiosyncratic shocks satisfies

$$\pi\Omega=\Omega\pi$$

Permutation invariance of the optimal solution

Proposition

The optimal solution of a permutation-invariant dynamic programming problem is permutation invariant. That is, for all $\pi \in \mathcal{S}_N$:

$$u(x, \pi X) = u(x, X)$$

and:

$$v(x, \pi X) = v(x, X)$$

Can u(x, X) permutation invariance guide $\mathcal{H}(\Theta)$ choice?

Representation of permutation-invariant functions

Proposition

(based on Wagstaff et al., 2019) Let $u : \mathbb{R}^{N+1} \to \mathbb{R}$ be a continuous permutation-invariant function under S_N , i.e., for all $(x, X) \in \mathbb{R}^{N+1}$ and all $\pi \in S_N$:

$$u(x, \pi X) = u(x, X)$$

Then, there exist a latent dimension $L \leq N$ and continuous functions $\rho : \mathbb{R}^{L+1} \to \mathbb{R}$ and $\phi : \mathbb{R} \to \mathbb{R}^L$ such that:

$$u(x,X) = \rho\left(x, \frac{1}{N}\sum_{i=1}^{N}\phi(X_i)\right)$$

Representation of permutation-invariant functions: Discussion and intuition

$$u(x,X) = \rho\left(x, \frac{1}{N}\sum_{i=1}^{N}\phi_1(X_i), \cdots, \frac{1}{N}\sum_{i=1}^{N}\phi_L(X_i)\right)$$

- This proposition should remind you of Krusell-Smith (1998), L=1, $\phi(X_i)=X_i$.
- Key benefit for approximation is the **representation** (ρ, ϕ) .
- Fitting a ρ and ϕ rather than f directly leads to far better generalization on \mathcal{X} . Why?:
 - Imposing structure on $\mathcal{H}(\Theta)$, functions that know a lot about the economic problem.
- In practice: L ≪ N generalizes very well.

 Properties

High-dimensional expectation: concentration of measures

High-dimensional expectation

Euler's equation:

$$\beta \mathbb{E}\left[p(X') + \gamma(1-\delta)u(X')\right]$$

- Linear example: $p(X') = 1 \frac{1}{N} \sum_{i=1}^{N} X'_i$.
- Conditioned on the aggregate shock ω , law of large numbers:

$$\mathbb{E}\left[p(X') \mid \omega\right] \approx p(X') | \omega$$
, for large N .

• In general, can we say the same thing about u(X')?

$$\mathbb{E}\left[u(X') \mid \omega\right] \approx u(X') \mid \omega$$
, for large N?

• Yes, but $u(\cdot)$ has to satisfy some properties.

Expected gradient bounded in *N*

Definition (Expected gradient bounded in N)

Let $f: \mathbb{R}^N \to \mathbb{R}$ be a bounded function in N and $z \sim \mathcal{N}(\mathbf{0}_N, \mathbf{I}_N)$ be a normalized Gaussian random vector. The function f has its expected gradient bounded in N if there exists a C such that:

$$\mathbb{E}\left[\|\nabla f(z)\|^2\right] \leq \frac{C}{N},$$

where C does not depend on N.

$$\mathbb{E}_{W}\left[\|\nabla u(X')\|^{2}\right] \leq \frac{C}{N}$$

- The policy to be well-behaved (non-explosive gradients).
- Other agent's influence vanishes.

Main result II: Concentration of measure

Proposition

Suppose $z \sim \mathcal{N}(\mathbf{0}_N, \Sigma)$, where the spectral radius of Σ , denoted by $\rho(\Sigma)$, is independent of N, z^1 a draw from z, and $f: \mathbb{R}^N \to \mathbb{R}$ is a function with expected gradient bounded in N. Then:

$$\mathbb{P}\left(\left|f(z^1) - \mathbb{E}\left[f(z)\right]\right| \ge \epsilon\right) \le \frac{\rho(\Sigma)C}{\epsilon^2} \frac{1}{N}$$

- As Ledoux (2001) puts it: "A random variable that depends in a Lipschitz way on many independent variables (but not too much on any of them) is essentially constant."
- With concentration of measure, dimensionality is not a curse; it is a blessing.

Implication: We can calculate $\mathbb{E}_W[u(X')|\omega]$ with a *single draw* of idiosyncratic shocks W:

- $\mathbb{E}_W[u(X')|\omega] \approx u(X')|\omega$.
- Reducing an N + 1-dimensional conditional expectation to a 1-D one (with good approximation).

Summarizing results

- The structure symmetry imposes on the functions leads to better generalization
 - Functions extrapolate better outside of the grid points $\hat{\mathcal{X}}$.
- Concentration of measures provides a fast method for calculating the conditional expectations.
 - Calculate with **one draw** of the idiosyncratic shocks (conditional on the aggregate shock).

Solving the Model

Design of $\mathcal{H}(\Theta)$: Deep learning architectures

$$u(x,X) = \rho\left(x, \frac{1}{N}\sum_{i=1}^{N}\phi(X_i)\right)$$

Three cases for ϕ :

• Identity function: One moment $\rightarrow \phi(\text{Identity})$.

$$u(x,X) = \rho\left(x, \frac{1}{N}\sum_{i=1}^{N}X_i\right)$$

• Up to degree four polynomials: 4 moments $\rightarrow \phi(\mathsf{Moments})$.

$$u(x, X) = \rho\left(x, \frac{1}{N} \sum_{i=1}^{N} X_i, \cdots, \frac{1}{N} \sum_{i=1}^{N} X_i^4\right)$$

Design of $\mathcal{H}(\Theta)$: Deep learning architectures

• A deep neural network for ϕ , with $L = 4 \rightarrow \phi(\text{ReLU})$.

$$u(x,X) = \rho\left(x, \frac{1}{N}\sum_{i=1}^{N}\phi_1(X_i), \cdots, \frac{1}{N}\sum_{i=1}^{N}\phi_4(X_i)\right)$$

If polynomials for ϕ : A finite set of moments à la Krusell-Smith.

- ullet In all cases, ho is a highly over-parameterized neural network with four layers.
- The baseline ϕ (Identity), ϕ (Moments), and ϕ (ReLU) have 49.4K, 49.8K, and 66.8K coefficients.

Solution method follows "interpolation" methods

- 1. Pick: $\hat{\mathcal{X}}$ as simulated trajectories from X_0 :
 - Only need 100 to 1000 points regardless of dimensionality of the state space N.
 - Because we use economic insight, i.e., symmetry which gives us good generalization.
- 2. **Choose**: Design the $\mathcal{H}(\Theta)$ with ρ and ϕ as discussed:
 - ϕ (Identity), ϕ (Moments), and ϕ (ReLU).

Using concentration of measures:

• One draw $\hat{W} = \{\hat{W}_1, \dots, \hat{W}_N\}$ of the idiosyncratic shocks. For a given $u(\cdot; \theta)$, and aggregate shock ω calculate:

$$X'_{i} = (1 - \delta)X_{i} + u(X) + \sigma \hat{W}_{i} + \eta \omega, \text{ for } i \in \{1, ..., N\}.$$

Solution method follows "interpolation" methods

Approximate the Euler residuals

$$\varepsilon(X; u(\cdot; \theta)) \equiv \gamma u(X; \theta) - \beta \mathbb{E}\left[P(X') + \gamma(1 - \delta)u(X'; \theta)\right]$$

and a quadrature method for aggregate shocks. Prerror analysis in N

3. **Fit**: The residuals $\varepsilon(X; u(\cdot; \theta))$, that is the "model" i.e., ℓ .

$$\min_{\theta \in \Theta} \sum_{X \in \hat{\mathcal{X}}} \varepsilon \left(X; \hat{u}(\cdot; \theta) \right)^2$$

4. How to Verify/Test: Given the approximate solution simulate new paths from X_0 and check the Euler residuals (ε) .

Study two cases: linear $(\nu=1)$ and nonlinear $(\nu>1)$ demand functions

Case 1: Linear to verify algorithms and methods

- With $\nu = 1$, we have a linear demand function: $p(X) = 1 \frac{1}{N} \sum_{i=1}^{N} X_i$.
- It generates a Linear-Quadratic (LQ) dynamic programming problem (only the mean of X_i matters).
- We can find the exact u(x, X), LQ has algebraic solutions.
- The LQ solution gives us a benchmark against which we can compare our deep learning solution.
- The neural network figures out very quickly that the solution is $u(x, X) = H_0 + \frac{1}{N} H_1 \sum_{i=1}^{N} X_i$ and finds a high-dimensional approximation which matches that for the training grid.

Equilibrium Paths: Linear case

Figure 1: Comparison between baseline approximate solutions and the LQ solution for the case with $\nu=1$ and N=128.

30

Accuracy of Solutions: Linear case

Figure 2: The relative errors for $\nu=1$ and N=128 for $\phi({\sf Identity}), \, \phi({\sf Moments}), \, {\sf and} \, \phi({\sf ReLU}).$ The dark blue curve shows the average residuals along equilibrium paths for 256 different trajectories.

Computation time: Linear case

Figure 3: Performance of the $\phi(ReLU)$ for different N (median value of 21 trials).

Case 2: Nonlinear case with no "closed-form" solution

- With $\nu > 1$, we have a nonlinear demand function: $p(X) = 1 \frac{1}{N} \sum_{i=1}^{N} X_i^{\nu}$.
- Now, the whole distribution of X_i matters.
- But we can still find the solution to this nonlinear case using exactly the same functional approximation and algorithm as before.
- We do not need change anything in the code except the value of ν .
- We do not have an exact solution to use as a benchmark, but can check residuals.
- ullet Same model and method. Computation time by ${\it N}$ nearly the same to linear case
 - Link to the code

Euler residuals: Nonlinear case

Figure 4: The Euler residuals for $\nu=1.5$ and N=128 for $\phi(\text{Moments})$ and $\phi(\text{ReLU})$. The dark blue curve shows the average residuals along equilibrium paths for 256 different trajectories. The shaded areas depict the 2.5th and 97.5th percentiles.

Equilibrium paths: Nonlinear case

Figure 5: The optimal policy u along the equilibrium paths for v = [1.0, 1.05, 1.1, 1.5] and N = 128. Each path shows the optimal policy for a single trajectory.

Some challenging question: Generalization puzzle

Question I: Generalization and overfitting

- From statistical learning and numerical analysis we know:
 - More coefficients in the family of parametric functions $\mathcal{H}(\Theta)$ leads to over-fitting and poor generalization (bias-variance trade-off).
 - We have 70K parameters, and < 1K grid points.
 - ullet The results indicate the opposite: More coefficients ullet better generalization.

How come we achieve great generalization?

Some challenging questions: Multiplicity and transversality puzzle

Question II: Multiplicity and transversality

$$\gamma u(X) = \beta \mathbb{E} \left[p(X') + \gamma (1 - \delta) u(X') \right]$$

$$X'_i = (1 - \delta) X_i + u(X) + \sigma W_i + \eta \omega, \quad \text{for } i \in \{1, ..., N\}$$

with linear prices. Guess and verify with $u(X) \equiv H_0 + \frac{1}{N}H_1\sum_{i=1}^{N}X_i$

- The Euler equation is quadratic \rightarrow **two** solutions: $(H_0^-, H_1^-), (H_0^+, H_1^+)$:
 - $H_1^- < 0 o$ stationary solution, $H_1^+ > 0 o$ non-stationary solution.
 - We have no explicit device in our algorithm to weed out the second solution.

How come we never observe the non-stationary solution in the results?

Understanding the **implicit bias** of deep neural networks answers both questions. **Ebrahimi Kahou et al. 2024**, **I&II** address these two challenging questions.

Implicit bias, Generalization, and Stationarity.

Representation with linear prices

Recall the representation,

$$u(x,X) = \rho\left(x, \frac{1}{N}\sum_{i=1}^{N}\phi(X_i)\right).$$

For $\nu = 1$ we can show that the following exact solution holds with our representation

- $\phi(X_n) = X_n$ identity, L = 1.
- Doesn't matter how to generate X since only need 2 points.
- Let's do it with 3 points.

Extreme example of generalizability of neural networks

- Forget we know any closed form, and see if over-fitting hurts us.
- Fit three grid points in \mathbb{R}^{512} (an economy with N = 512 agents).
- Flexible functional form with 17.7 K coefficients.
- Now, evaluate for a whole bunch of reasonable trajectories from the initial condition and check the policy error:
 - 5×10^{-5} MSE of Euler, approximately 0.06% relative error of u(X).

This is related to a literature called **double descent**.

Classical bias-variance trade-off

- Complexity of H: think of
 - Degree of Chebyshev polynomials, polynomials, ...
 - Coefficients of the neural networks (weights and biases)

The cure to over-fitting is to add more parameters

Belkin et al., 2019: Traditional statistics/bias-variance trade-off stop around the interpolation threshold.

Deep learning optimizes in a space of functions

Remember

$$\min_{\theta \in \Theta} \sum_{x \in \hat{\mathcal{X}}} \ell(\hat{\psi}(\cdot; \theta), x)^2$$

- Deep learning: number of coefficients is much larger than the number of grid points.
- Since $M \gg D$, it is possible for $\hat{\psi}$ to interpolate and the objective value will be ≈ 0 .
- Since $M \gg D$ there are many solutions (e.g., θ_1 and θ_2),
 - Agree on the grid points: $\hat{\psi}(x; \theta_1) \approx \hat{\psi}(x; \theta_2)$ for $x \in \hat{\mathcal{X}}$.
- ullet Since individual heta are irrelevant it is helpful to think of optimization directly within ${\cal H}$

$$\min_{\hat{\psi} \in \mathcal{H}} \sum_{x \in \hat{\mathcal{X}}} \ell(\hat{\psi}, x)^2$$

Deep learning and interpolation

- For M large enough, optimizers **tend to** converge to **unique** "simple" $\hat{\psi}$ (w.r.t to some norm $\|\cdot\|_s$). Unique both in $\hat{\mathcal{X}}$ and \mathcal{X} . There is a **bias** toward a specific class of solutions.
- How to interpret: interpolating solutions for some functional norm $\|\cdot\|_S$

$$\min_{\hat{\psi} \in \mathcal{H}} ||\hat{\psi}||_{S}$$
 s.t. $\ell(\hat{\psi}, x) = 0$, for $x \in \hat{\mathcal{X}}$

- Comp Sci literature refers to this as the inductive bias or implicit bias: optimization process is biased toward particular $\hat{\psi}$.
- Small values of $\|\cdot\|_S$ corresponds to flat solutions with small gradients (w.r.t. input).

Flat and smooth interpolation: illustration

Answering the challenging questions

- Answering **generalization puzzle**: Flat interpolation leads to good generalization:
 - If the true underlying functions is flat between (and outside) the points.
 - The cure to over-fitting is to add more parameters.
- Answering multiplicity puzzle: In the linear set-up, the explosive solution has larger derivatives (less flat) than the non-explosive one i.e, $|H_1^+| > |H_1^-|$:
 - The deep-learning based solution automatically satisfies stationarity.
- Ebrahimi Kahou et al. 2024, I& II explore this for many more dynamic models in macroeconomics (e.g., neoclassical growth and asset pricing) we show:
 - We can have short- and medium-run accurate solutions (even in non-stationary cases) .
 - We dont need to calculate the steady-state (ergodic distribution).

Conclusions

Extensions

- 1. Decreasing returns to scale: the policy becomes a function of x.
- 2. Multiple productivity types (e.g., two different groups).
- 3. Complex idiosyncratic states (e.g., a agent is described with more than one variable).

Summarizing our contribution

- **Method** for solving **high-dimensional** dynamic programming problems and competitive equilibria with idiosyncratic and aggregate shocks relying
 - Symmetry.
 - Concentration of measures: Dimensionality is a blessing not a curse.
- Using economic theory (i.e., exchangeability) and deep learning for function approximation with a huge # of parameters (>> grid points)
 - Achieve great generalization: key to alleviate the curse of dimensionality.
- Implementation
 - Can deal with 10000+ agents.
 - Can deal with 10000+ dimensional expectations with one Monte-carlo draw.

Future challenges ahead

- The role of sampling in high-dimensional spaces.
- Equilibrium selection, in case of multiplicity.
- Guaranteed stable solutions.

Appendix

Example: Symmetry in a regression problem

Data generating process:

$$y = f(X) = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^{\zeta}\right)^{\frac{1}{\zeta}}$$

- Pick $a \sim \mathcal{U}(a_{\min}, a_{\max})$
- Draw $X=(x_1,\cdots,x_N)\sim \mathcal{N}(a,\sigma^2)$: M data points
- $\zeta = 1.5$, $a_{min} = 1$, $a_{max} = 2$, $\sigma = 0.2$, M = 10
- Generate a set of new data and look at the mean of the relative errors

$$\left|\frac{\hat{f}(X)-f(X)}{f(X)}\right|$$

Results: Symmetry in a regression problem

Table 1: Results for the regression problem

<u>Î</u> N	1	2	3	4	5	20	NONE
2	1.85%	1.19%	1.91%	1.27%	1.7%	1.75%	1.36%
4	1.04%	1.7%	1.76%	0.76%	0.97%	0.83%	1.65%
8	0.57%	0.57%	0.71%	0.64%	0.6%	0.56%	3.68%
16	0.5%	0.49%	0.51%	0.45%	0.42%	0.48%	4.91%
32	0.32%	0.35%	0.32%	0.28%	0.37%	0.51%	5.69%
64	0.32%	0.27%	0.27%	0.33%	0.28%	0.29%	5.77%
128	0.32%	0.22%	0.24%	0.28%	0.23%	0.22%	5.77%

Definition (Bounded functions in N)

Let:

$$\mathcal{L}(M) \equiv \{ y \in \mathbb{R}^N : |y_i| \le M \ \forall i = 1, \dots, N \}$$

be an N-dimensional hypercube in \mathbb{R}^N . A function $f: \mathbb{R}^N \to \mathbb{R}$ is bounded in N if for every M there exists K_M such that

$$\sup_{y \in \mathcal{L}(M)} |f(y)| < K_M,$$

where K_M is a constant that does not depend on N, but may depend on M.

- Example $f(y) = \frac{1}{N} \sum_{i=1}^{N} y_i \to \sup_{y \in \mathcal{L}(M)} |f(y)| < M$.
- To avoid $f(y) = \sum_{i=1}^{N} y_i \to \sup_{y \in \mathcal{L}(M)} |f(y)| < NM$.

Concentration of measure is the bless of dimensionality

In the linear case we know the closed form solution for u

$$\hat{\varepsilon}(X; u) - 0 \sim \mathcal{N}\left(0, \frac{\sigma_{\varepsilon}^{2}}{N}\right)$$
$$u(\hat{X}') - \mathbb{E}\left[u(X') \mid \omega\right] \sim \mathcal{N}\left(0, \frac{\sigma_{u}^{2}}{N}\right)$$

- ullet Conditional expectation becomes constant as N gets large.
 - One single Monte-carlo draw of the idiosyncratic shocks is enough.

Analytic euler error due to the concentration of measure

Table 2: Performance of Different Networks in Solving the Linear Model

		Success (%)	Parameters (Thousands, K)	Time (s)	Train MSE (ε)	Val MSE (ε)	Test MSE (ε)	Policy Error $(\epsilon_{ m rel})$
Group	Description							
Identity	Baseline	48%	49.4	28	6.7e-07	4.9e-07	5.0e-07	0.10%
	Baseline: Moments (1,2,3,4)	59%	50.3	36	9.0e-07	8.7e-07	1.2e-06	0.13%
Moments	Moments (1,2)	54%	50.0	33	1.0e-06	8.7e-07	1.0e-06	0.12%
	Very Shallow (1 layer)	0%	0.8	-	-	-	-	-
	Baseline: L= 4	97%	199.6	17	1.3e-06	3.6e-07	3.6e-07	0.09%
	L = 2	93%	201.1	17	1.3e-06	4.0e-07	4.3e-07	0.09%
Deep Sets	L = 16	93%	204.2	14	1.5e-06	3.5e-07	3.5e-07	0.10%
	Deep (ϕ : 2 layers, $ ho$: 4 layers)	100%	215.9	25	2.0e-06	3.8e-07	3.7e-07	0.10%
	Shallow ($\phi:1$ layer, $\rho:2$ layers)	1%	68.0	16	1.6e-07	3.3e-07	3.5e-07	0.10%

Table 3: Nonlinear Model Performance

		Time (s)	Params (K)	Train MSE (ε)	Test MSE (ε)	Val MSE (ε)
group	description					
	Baseline	26	49.8	6.0e-06	5.0e-06	3.8e-06
	Moments (1,2)	27	49.5	8.0e-06	5.1e-06	3.6e-06
ϕ (Moments)	Very Shallow (1 layer)	252	0.6	8.3e-06	1.4e + 00	5.0e-06
$\varphi(\text{INIOIIIEITS})$	Thin (32 nodes)	66	3.2	1.1e-05	9.7e-06	4.4e-06
	Baseline	60	67.1	1.4e-05	4.7e-06	3.3e-06
	L = 8	73	68.1	1.1e-05	4.9e-06	2.0e-06
	L = 16	72	70.2	1.5e-05	5.4e-06	1.7e-06
$\phi(ReLU)$	Very Shallow $(\phi, ho: 1$ layer)	136	1.4	8.9e-06	4.8e + 06	4.9e-06
$\psi(\text{ReLO})$	Shallow $(\phi, \rho: 2 \text{ layers})$	47	34.3	1.0e-05	9.2e-06	2.8e-06
	Thin $(\phi, \rho : 32 \text{ nodes})$	52	4.5	1.3e-05	6.0e-06	2.7e-06

Parameters

•
$$\gamma=$$
 90, $\beta=$ 0.95, $\sigma=$ 0.005, $\eta=$ 0.001.