
Exploiting Symmetry in

High-Dimensional Dynamic Programming

Mahdi Ebrahimi Kahou1 Jesús Fernández-Villaverde2 Jesse Perla2 Arnav Sood3

April 6, 2025

1Bowdoin College

3University of Pennsylvania

3University of British Columbia, Vancouver School of Economics

4Carnegie Mellon University

Motivation

• Most dynamic models in macro (and other fields) deal with either:

• Representative agent or few agents.

• A continuum of agents.

• However, many models of interest in macro (IO and trade) deal with finite (but large) number of

agents

• Industry dynamics with many firms, agents and industries, even models with networks.

• These models are becoming increasingly popular, but:

• They pose computational challenges as we add more agents.

• No (non-heuristic) algorithm exists providing global solutions in the presence of aggregate uncertainty.

1

Challenges: the curse of dimensionality in equilibrium models

Three components to the curse of dimensionality with many agents (Bellman, 1958, p. IX)

1. The cardinality of the state space is enormous.

• With 266 state variables, with 2 values per state (zero and one), we have more arrangements (2266) than

the estimated number of protons in the universe.

2. With idiosyncratic and aggregate shocks we need to calculate high-dimensional conditional

expectations.

3. Finding equilibrium paths to the steady-state (ergodic distributions) are extremely hard in

high-dimensions.

2

Contribution I

Inspired by economic theory, providing novel method for globally solving high-dimensional heterogeneous

agent models with aggregate shocks which relies on:

• A symmetry present in many heterogeneous agent models, i.e., exchangeability of agents.

• Example: In general equilibrium models the Walrasian auctioneer removes indices.

• The solution must be faithful to this symmetry caused by this exchangeability of agents.

3

Contribution II

• Concentration of measures, something that resembles the law of large numbers to deal with

conditional expectations.

• More agents makes it easier to forecast the evolution of distributions.

• Conditional on the aggregate shock, we can use something similar law of large numbers to calculate

expectations.

• We show how to implement the symmetry when using deep neural networks.

With these we globally solve a model with 10,000 agents which was not possible before.

4

Literature Review

• Deep learning as a functional approximation: Maliar et al. (2019), Fernández-Villaverde et al.

(2022), Duarte (2018), Azinovic et al. (2022), Han et al. (2021) (a mean-field approach).

• Symmetry in statistics and machine learning: Bloem-Reddy and Teh (2020), Zaheer et al. (2017),

and Yarotsky (2018).

• Symmetry in computer science (MDP/RL): Ravindran and Barto (2001) and Narayanamurthy and

Ravindran (2008), van der Pol et al. (2020).

• Symmetry in micro and games: Jovanovic and Rosenthal (1988), Hartford et al. (2016)

5

Background: Deep learning for

functional equations

Equilibrium conditions as functional equations

Most theoretical models in economics with equilibrium conditions can be written as functional equations:

• Take some function(s) ψ ∈ Ψ where ψ : X → Y (e.g. asset price, investment choice, best-response).

• Domain X could be state (e.g. dividends, capital, opponents state) or time if sequential.

• The “model” is ℓ : Ψ ×X → R (e.g., Euler and Bellman residuals, equilibrium FOCs).

• The solution is the root of the model (residuals operator), i.e., 0 ∈ R, at each x ∈ X .

Then a solution is a ψ∗ ∈ Ψ where ℓ(ψ∗, x) = 0 for all x ∈ X . How do we find an approximate solution?

6

Classical solution method for functional equations

Quick review of collocation-like methods:

1. Pick finite set of D points X̂ ⊂ X (e.g., a grid).

2. Choose approximation ψ̂(·; θ) ∈ H(Θ) with coefficients Θ ⊆ RM (e.g., Chebyshev polynomials).

3. Fit with nonlinear least-squares

min
θ∈Θ

∑
x∈X̂

ℓ(ψ̂(·; θ), x)2

If θ ∈ Θ is such that ℓ(ψ̂(·; θ), x) = 0 for all x ∈ X̂ we say ψ̂(·; θ) interpolates X̂ .

4. The goal is to have good generalization:

• The approximate function is close to the solution outside of X̂ .

7

Deep Neural Networks

Deep learning is highly-overparameterized H(Θ) (M ≫ D) designed for good generalization.

• Example: one layer neural network, ψ̂ : RQ → R:

ψ̂(x ; θ) = W2 · σ (W1 · x + b1) + b2

• W1 ∈ RP×Q , b1 ∈ RP×1, W2 ∈ R1×P , and b2 ∈ R.

• σ(·) is a nonlinear function applied element-wise (e.g., max{·, 0}).

• Θ ≡ {b1,W1, b2,W2} are the coefficients, in this example M = PQ + P + P + 1.

• Making it “deeper” by adding another “layer”: ψ̂(x ; θ) ≡ W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3.

• Very flexible to design H(Θ) using economic insights (e.g., encode symmetry).

• Composing H(Θ) from multiple function (e.g., deeper) tend to generalize better better in practice.

8

Over-parameterization and convergence

If the number of coefficients is much larger than the number of grid points M ≫ D, there are many

different sets of coefficients that achieve interpolation.

• What is going on?

• Deep neural networks and their optimizers have an inherent implicit bias toward a unique class of

interpolating solutions.

• Figuring out this property is a very active field in computer science and optimization theory.

• Converges to “simple” (flat) interpolating functions.

• They have a built-in Occam’s razor.

• Modern ML, uses high-dimensional non-convex optimizations. Does the initialization of the

coefficients matter?

9

Application

How do we pick our application to show how all this works?

• In terms of application, there are two routes:

1. Introducing a sophisticated application where the method “shines”.

2. Or, applying it to a well-known example.

• If I tell you about a sophisticated application, how do we know our “solution” method works?

• So we study a well-known example (with a twist).

10

Our application

A variation of the Lucas and Prescott (1971) model of investment under uncertainty with N firms.

Why?

1. Ljungqvist and Sargent (2018), pp. 226-228, use it to introduce recursive competitive equilibria.

2. Simple model that fits in one slide.

3. Under one parameterization, the model has a known Linear-Quadratic (LQ) solution, which gives us

an exact benchmark.

4. By changing one parameter, the model is nonlinear, with no known solution. Our method handles

the nonlinear case as easily as the LQ case with high accuracy.

11

Investment under uncertainty

• Industry consisting of N > 1 firms, each producing the same good.

• Firm of interest produces output x (x units of capital).

• Thus, the vector X ≡ [X1, . . .XN]
⊤ is the production (or capital) of the whole industry.

• The inverse demand function for the industry is, for some ν ≥ 1 (this is our twist):

p(X) = 1− 1

N

N∑
i=1

X ν
i

• The firm does not consider the impact of its individual decisions on p(X).

• Due to adjustment frictions, investing u has a cost γ
2 u

2.

• Law of motion for capital x ′ = (1− δ)x + u + σw + ηω where w ∼ N (0, 1) an i.i.d. idiosyncratic

shock, and ω ∼ N (0, 1) an i.i.d. aggregate shock, common to all firms.

• The firm chooses u to maximize E
[∑∞

t=0 β
t
(
p(X)x − γ

2 u
2
)]
. 12

Recursive problem

The recursive problem of the firm taking the exogenous policy û(·,X) for all other firms as given is:

v(x ,X) = max
u

{
p(X)x − γ

2
u2 + βE [v(x ′,X ′)]

}
s.t. x ′ = (1− δ)x + u + σw + ηω

X ′
i = (1− δ)Xi + û(Xi ,X) + σWi + ηω, for i ∈ {1, ...,N}

Take FOCs and equation using standard steps to write equilibrium as the LOM and Euler equation

γu(X) = βE [p(X ′) + γ(1− δ)u(X ′)]

13

Curse of dimensionality: a closer look

γu(X) = βE [p(X ′) + γ(1− δ)u(X ′)]

Let’s say there are 1000 agents:

1. The domain of the functions of interest u(·) is 1000-dimensional.

2. The expectation operator E [·] is a 1001-dimensional integral.

• 1000 idiosyncratic shocks + 1 aggregate shock.

3. What about the stationarity of the solution and the transversality condition?

• I will come back to this.

14

Symmetry and Permutation

Invariant

General class of problems: A “big X , little x” dynamic programming

v(x ,X) = max
u

{
r
(
x , u,X

)
+ βE [v(x ′,X ′)]

}
s.t. x ′ = g(x , u) + σw + ηω

X ′ = G (X) + ΩW + ηω1N

1. x is the individual state of the agent.

2. X is a vector stacking the individual states of all of the N agents in the economy.

3. u is the control variable.

4. w is random innovation to the individual state, stacked in W ∼ N (0N , IN) and where, w.l.o.g.,

w = W1.

5. ω ∼ N (0, 1) is a random aggregate innovation to all the individual states. 15

Permutation Groups

• A permutation matrix is a square matrix with a single 1 in each row and column and zeros

everywhere else.

• Let SN be the set of all n! permutation matrices of size N × N. For example:

S2 =

{[
1 0

0 1

]
,

[
0 1

1 0

]}

• Multiplying vector v ∈ RN by π ∈ SN reorders elements of v

16

Permutation-invariant dynamic programming

Definition

A ‘big X , little x ’ dynamic programming problem is a permutation-invariant dynamic programming

problem if, for all (x ,X) ∈ RN+1 and all permutations π ∈ SN

1. The reward function r is permutation invariant:

r(x , u, πX) = r(x , u,X)

2. The deterministic component of the law of motion for X is permutation equivariant:

G (πX) = πG (X)

3. The covariance matrix of the idiosyncratic shocks satisfies

πΩ = Ωπ 17

Permutation invariance of the optimal solution

Proposition

The optimal solution of a permutation-invariant dynamic programming problem is permutation invariant.

That is, for all π ∈ SN :

u(x , πX) = u(x ,X)

and:

v(x , πX) = v(x ,X)

Can u(x ,X) permutation invariance guide H(Θ) choice?

18

Representation of permutation-invariant functions

Proposition

(based on Wagstaff et al., 2019) Let u : RN+1 → R be a continuous permutation-invariant function

under SN , i.e., for all (x ,X) ∈ RN+1 and all π ∈ SN :

u(x , πX) = u(x ,X)

Then, there exist a latent dimension L ≤ N and continuous functions ρ : RL+1 → R and ϕ : R → RL

such that:

u(x ,X) = ρ

(
x ,

1

N

N∑
i=1

ϕ(Xi)

)

19

Representation of permutation-invariant functions: Discussion and intuition

u(x ,X) = ρ

(
x ,

1

N

N∑
i=1

ϕ1(Xi), · · · ,
1

N

N∑
i=1

ϕL(Xi)

)

• This proposition should remind you of Krusell-Smith (1998), L = 1, ϕ(Xi) = Xi .

• Key benefit for approximation is the representation (ρ, ϕ).

• Fitting a ρ and ϕ rather than f directly leads to far better generalization on X . Why?:

• Imposing structure on H(Θ), functions that know a lot about the economic problem.

• In practice: L ≪ N generalizes very well. Regression Example

20

High-dimensional expectation:

concentration of measures

High-dimensional expectation

Euler’s equation:

βE [p(X ′) + γ(1− δ)u(X ′)]

• Linear example: p(X ′) = 1− 1
N

∑N
i=1 X

′
i .

• Conditioned on the aggregate shock ω, law of large numbers:

E [p(X ′) | ω] ≈ p(X ′)|ω, for large N.

• In general, can we say the same thing about u(X ′)?

E [u(X ′) | ω] ≈ u(X ′)|ω, for large N?

• Yes, but u(·) has to satisfy some properties.

21

Expected gradient bounded in N

Definition (Expected gradient bounded in N)

Let f : RN → R be a bounded function in N and z ∼ N (0N , IN) be a normalized Gaussian random

vector. The function f has its expected gradient bounded in N if there exists a C such that:

E
[
∥∇f (z)∥2

]
≤ C

N
,

where C does not depend on N.

EW

[
∥∇u(X ′)∥2

]
≤ C

N

• The policy to be well-behaved (non-explosive gradients).

• Other agent’s influence vanishes.

22

Main result II: Concentration of measure

Proposition

Suppose z ∼ N (0N ,Σ), where the spectral radius of Σ, denoted by ρ(Σ), is independent of N, z1 a

draw from z , and f : RN → R is a function with expected gradient bounded in N. Then:

P
(∣∣f (z1)− E [f (z)]

∣∣ ≥ ϵ
)
≤ ρ(Σ)C

ϵ2
1

N

• As Ledoux (2001) puts it: “A random variable that depends in a Lipschitz way on many independent

variables (but not too much on any of them) is essentially constant.”

• With concentration of measure, dimensionality is not a curse; it is a blessing.

Implication: We can calculate EW [u(X ′)|ω] with a single draw of idiosyncratic shocks W :

• EW [u(X ′)|ω] ≈ u(X ′)|ω.

• Reducing an N + 1-dimensional conditional expectation to a 1-D one (with good approximation).

23

Summarizing results

• The structure symmetry imposes on the functions leads to better generalization

• Functions extrapolate better outside of the grid points X̂ .

• Concentration of measures provides a fast method for calculating the conditional expectations.

• Calculate with one draw of the idiosyncratic shocks (conditional on the aggregate shock).

24

Solving the Model

Design of H(Θ): Deep learning architectures

u(x ,X) = ρ

(
x ,

1

N

N∑
i=1

ϕ(Xi)

)

Three cases for ϕ:

• Identity function: One moment → ϕ(Identity).

u(x ,X) = ρ

(
x ,

1

N

N∑
i=1

Xi

)

• Up to degree four polynomials: 4 moments → ϕ(Moments).

u(x ,X) = ρ

(
x ,

1

N

N∑
i=1

Xi , · · · ,
1

N

N∑
i=1

X 4
i

)
25

Design of H(Θ): Deep learning architectures

• A deep neural network for ϕ, with L = 4 → ϕ(ReLU).

u(x ,X) = ρ

(
x ,

1

N

N∑
i=1

ϕ1(Xi), · · · ,
1

N

N∑
i=1

ϕ4(Xi)

)

If polynomials for ϕ: A finite set of moments à la Krusell-Smith.

• In all cases, ρ is a highly over-parameterized neural network with four layers.

• The baseline ϕ(Identity), ϕ(Moments), and ϕ(ReLU) have 49.4K , 49.8K , and 66.8K coefficients.

26

Solution method follows “interpolation” methods

1. Pick: X̂ as simulated trajectories from X0:

• Only need 100 to 1000 points regardless of dimensionality of the state space N.

• Because we use economic insight, i.e., symmetry which gives us good generalization.

2. Choose: Design the H(Θ) with ρ and ϕ as discussed:

• ϕ(Identity), ϕ(Moments), and ϕ(ReLU).

Using concentration of measures:

• One draw Ŵ = {Ŵ1, . . . , ŴN} of the idiosyncratic shocks. For a given u(·; θ), and aggregate shock

ω calculate:

X ′
i = (1− δ)Xi + u(X) + σŴi + ηω, for i ∈ {1, ...,N}.

27

Solution method follows “interpolation” methods

• Approximate the Euler residuals

ε (X ; u(·; θ)) ≡ γu(X ; θ)− βE [P(X ′) + γ(1− δ)u(X ′; θ)]

and a quadrature method for aggregate shocks. error analysis in N

3. Fit: The residuals ε (X ; u(·; θ)), that is the “model” i.e., ℓ.

min
θ∈Θ

∑
X∈X̂

ε (X ; û(·; θ))2

4. How to Verify/Test: Given the approximate solution simulate new paths from X0 and check the

Euler residuals (ε).

Study two cases: linear (ν = 1) and nonlinear (ν > 1) demand functions

28

Case 1: Linear to verify algorithms and methods

• With ν = 1, we have a linear demand function: p(X) = 1− 1
N

∑N
i=1 Xi .

• It generates a Linear-Quadratic (LQ) dynamic programming problem (only the mean of Xi matters).

• We can find the exact u(x ,X), LQ has algebraic solutions.

• The LQ solution gives us a benchmark against which we can compare our deep learning solution.

• The neural network figures out very quickly that the solution is u(x ,X) = H0 +
1
NH1

∑N
i=1 Xi and

finds a high-dimensional approximation which matches that for the training grid.

29

Equilibrium Paths: Linear case

0 10 20 30 40 50 60
Time(t)

0.0250

0.0275

0.0300

0.0325

u(Xt) with φ(Identity), φ(Moments) and φ(ReLU) : Equilibrium Path

u(Xt), LQ

u(Xt), φ(Identity)

u(Xt), φ(Moments)

u(Xt), φ(ReLU)

43 44

0.0342

0.0343

Figure 1: Comparison between baseline approximate solutions and the LQ solution for the case with ν = 1 and

N = 128. 30

Accuracy of Solutions: Linear case

0 20 40 60
Time(t)

10−4

10−3

Policy errors (εrel) with φ(Identity)

Median

10th and 90th percentiles

25th and 75th percentiles

0 20 40 60
Time(t)

10−4

10−3

Policy errors (εrel) with φ(Moments)

Median

10th and 90th percentiles

25th and 75th percentiles

0 20 40 60
Time(t)

10−4

10−3

Policy errors (εrel) with φ(ReLU)

Median

10th and 90th percentiles

25th and 75th percentiles

Figure 2: The relative errors for ν = 1 and N = 128 for ϕ(Identity), ϕ(Moments), and ϕ(ReLU). The dark blue

curve shows the average residuals along equilibrium paths for 256 different trajectories.

31

Computation time: Linear case

102 103 104 105

N

20

40

60

80

100

120

Computation time (seconds)

Median

10th and 90th percentiles

25th and 75th percentiles

102 103 104 105

N

10−4

10−3

Policy errors (εrel)

Median

10th and 90th percentiles

25th and 75th percentiles

Figure 3: Performance of the ϕ(ReLU) for different N (median value of 21 trials). 32

Case 2: Nonlinear case with no “closed-form” solution

• With ν > 1, we have a nonlinear demand function: p(X) = 1− 1
N

∑N
i=1 X

ν
i .

• Now, the whole distribution of Xi matters.

• But we can still find the solution to this nonlinear case using exactly the same functional

approximation and algorithm as before.

• We do not need change anything in the code except the value of ν.

• We do not have an exact solution to use as a benchmark, but can check residuals.

• Same model and method. Computation time by N nearly the same to linear case

• Link to the code

33

https://github.com/HighDimensionalEconLab/symmetry_dynamic_programming/blob/main/demo_notebooks/investment_euler_demo.ipynb

Euler residuals: Nonlinear case

0 20 40 60
Time(t)

10−8

10−7

10−6

10−5

Euler residuals squared (ε2) with φ(Moments)

Median

10th and 90th percentiles

25th and 75th percentiles

0 20 40 60
Time(t)

10−8

10−7

10−6

10−5

Euler residuals squared (ε2) with φ(ReLU)

Median

10th and 90th percentiles

25th and 75th percentiles

Figure 4: The Euler residuals for ν = 1.5 and N = 128 for ϕ(Moments) and ϕ(ReLU). The dark blue curve shows

the average residuals along equilibrium paths for 256 different trajectories. The shaded areas depict the 2.5th and

97.5th percentiles.

34

Equilibrium paths: Nonlinear case

0 10 20 30 40 50 60
Time(t)

0.025

0.030

0.035

u(Xt) with φ(ReLU): Equilibrium Path

ν = 1.5

ν = 1.3

ν = 1.0

Figure 5: The optimal policy u along the equilibrium paths for ν = [1.0, 1.05, 1.1, 1.5] and N = 128. Each path

shows the optimal policy for a single trajectory. 35

Some challenging question: Generalization puzzle

Question I: Generalization and overfitting

• From statistical learning and numerical analysis we know:

• More coefficients in the family of parametric functions H(Θ) leads to over-fitting and poor

generalization (bias-variance trade-off).

• We have 70K parameters, and < 1K grid points.

• The results indicate the opposite: More coefficients → better generalization.

How come we achieve great generalization?

36

Some challenging questions: Multiplicity and transversality puzzle

Question II: Multiplicity and transversality

γu(X) = βE [p(X ′) + γ(1− δ)u(X ′)]

X ′
i = (1− δ)Xi + u(X) + σWi + ηω, for i ∈ {1, ...,N}

with linear prices. Guess and verify with u(X) ≡ H0 +
1
NH1

∑N
i=1 Xi

• The Euler equation is quadratic → two solutions: (H−
0 ,H

−
1), (H+

0 ,H
+
1):

• H−
1 < 0 → stationary solution, H+

1 > 0 → non-stationary solution.

• We have no explicit device in our algorithm to weed out the second solution.

How come we never observe the non-stationary solution in the results?

Understanding the implicit bias of deep neural networks answers both questions. Ebrahimi Kahou et

al. 2024, I&II address these two challenging questions.
37

Implicit bias, Generalization, and

Stationarity.

Representation with linear prices

Recall the representation,

u(x ,X) = ρ

(
x ,

1

N

N∑
i=1

ϕ(Xi)

)
.

For ν = 1 we can show that the following exact solution holds with our representation

• ϕ(Xn) = Xn identity, L = 1.

• ρ(x , y) = θ1 + θ2y .

• Doesn’t matter how to generate X since only need 2 points.

• Let’s do it with 3 points.

38

Extreme example of generalizability of neural networks

• Forget we know any closed form, and see if over-fitting hurts us.

• Fit three grid points in R512 (an economy with N = 512 agents).

• Flexible functional form with 17.7 K coefficients.

• Now, evaluate for a whole bunch of reasonable trajectories from the initial condition and check the

policy error:

• 5× 10−5 MSE of Euler, approximately 0.06% relative error of u(X).

This is related to a literature called double descent.

39

Classical bias-variance trade-off

• Complexity of H: think of

• Degree of Chebyshev polynomials, polynomials, ...

• Coefficients of the neural networks (weights and biases)

40

The cure to over-fitting is to add more parameters

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

Belkin et al., 2019: Traditional statistics/bias-variance trade-off stop around the interpolation threshold.

41

Deep learning optimizes in a space of functions

Remember

min
θ∈Θ

∑
x∈X̂

ℓ(ψ̂(·; θ), x)2

• Deep learning: number of coefficients is much larger than the number of grid points.

• Since M ≫ D, it is possible for ψ̂ to interpolate and the objective value will be ≈ 0.

• Since M ≫ D there are many solutions (e.g., θ1 and θ2),

• Agree on the grid points: ψ̂(x ; θ1) ≈ ψ̂(x ; θ2) for x ∈ X̂ .

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
ψ̂∈H

∑
x∈X̂

ℓ(ψ̂, x)2

But which ψ̂? 42

Deep learning and interpolation

• For M large enough, optimizers tend to converge to unique “simple” ψ̂ (w.r.t to some norm ∥ · ∥S).
Unique both in X̂ and X . There is a bias toward a specific class of solutions.

• How to interpret: interpolating solutions for some functional norm ∥ · ∥S

min
ψ̂∈H

||ψ̂||S

s.t. ℓ(ψ̂, x) = 0, for x ∈ X̂

• Comp Sci literature refers to this as the inductive bias or implicit bias: optimization process is biased

toward particular ψ̂.

• Small values of ∥ · ∥S corresponds to flat solutions with small gradients (w.r.t. input).

43

Flat and smooth interpolation: illustration

0 1 2 3 4 5
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data
of Parameters= 31

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data
of Parameters= 2.4 K

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data
of Parameters= 12 K

44

Answering the challenging questions

• Answering generalization puzzle: Flat interpolation leads to good generalization:

• If the true underlying functions is flat between (and outside) the points.

• The cure to over-fitting is to add more parameters.

• Answering multiplicity puzzle: In the linear set-up, the explosive solution has larger derivatives (less

flat) than the non-explosive one i.e, |H+
1 | > |H−

1 |:

• The deep-learning based solution automatically satisfies stationarity.

• Ebrahimi Kahou et al. 2024, I& II explore this for many more dynamic models in macroeconomics

(e.g., neoclassical growth and asset pricing) we show:

• We can have short- and medium-run accurate solutions (even in non-stationary cases) .

• We dont need to calculate the steady-state (ergodic distribution).

45

Conclusions

Extensions

1. Decreasing returns to scale: the policy becomes a function of x .

2. Multiple productivity types (e.g., two different groups).

3. Complex idiosyncratic states (e.g., a agent is described with more than one variable).

46

Summarizing our contribution

• Method for solving high-dimensional dynamic programming problems and competitive equilibria

with idiosyncratic and aggregate shocks relying

• Symmetry.

• Concentration of measures: Dimensionality is a blessing not a curse.

• Using economic theory (i.e., exchangeability) and deep learning for function approximation with a

huge # of parameters (≫ grid points)

• Achieve great generalization: key to alleviate the curse of dimensionality.

• Implementation

• Can deal with 10000+ agents.

• Can deal with 10000+ dimensional expectations with one Monte-carlo draw.

47

Future challenges ahead

• The role of sampling in high-dimensional spaces.

• Equilibrium selection, in case of multiplicity.

• Guaranteed stable solutions.

48

Appendix

Example: Symmetry in a regression problem

Data generating process:

y = f (X) =

(
1

N

N∑
i=1

xζi

) 1
ζ

• Pick a ∼ U(amin, amax)

• Draw X = (x1, · · · , xN) ∼ N (a, σ2) : M data points

• ζ = 1.5, amin = 1, amax = 2, σ = 0.2, M = 10

• Generate a set of new data and look at the mean of the relative errors

∣∣ f̂ (X)− f (X)

f (X)

∣∣
49

Results: Symmetry in a regression problem

Table 1: Results for the regression problem

L̂ 1 2 3 4 5 20 NONE
N

2 1.85% 1.19% 1.91% 1.27% 1.7% 1.75% 1.36%

4 1.04% 1.7% 1.76% 0.76% 0.97% 0.83% 1.65%

8 0.57% 0.57% 0.71% 0.64% 0.6% 0.56% 3.68%

16 0.5% 0.49% 0.51% 0.45% 0.42% 0.48% 4.91%

32 0.32% 0.35% 0.32% 0.28% 0.37% 0.51% 5.69%

64 0.32% 0.27% 0.27% 0.33% 0.28% 0.29% 5.77%

128 0.32% 0.22% 0.24% 0.28% 0.23% 0.22% 5.77%

back
50

Definition (Bounded functions in N)

Let:

L(M) ≡ {y ∈ RN : |yi | ≤ M ∀i = 1, . . . ,N}

be an N-dimensional hypercube in RN . A function f : RN → R is bounded in N if for every M there

exists KM such that

sup
y∈L(M)

|f (y)| < KM ,

where KM is a constant that does not depend on N, but may depend on M.

• Example f (y) = 1
N

∑N
i=1 yi → supy∈L(M) |f (y)| < M.

• To avoid f (y) =
∑N

i=1 yi → supy∈L(M) |f (y)| < NM.

back

51

Concentration of measure is the bless of dimensionality

In the linear case we know the closed form solution for u

ε̂ (X ; u)− 0 ∼ N
(
0,
σ2
ε

N

)
u(X̂ ′)− E [u(X ′) | ω] ∼ N

(
0,
σ2
u

N

)

• Conditional expectation becomes constant as N gets large.

• One single Monte-carlo draw of the idiosyncratic shocks is enough.

back

52

Analytic euler error due to the concentration of measure

100 101 102 103 104

N

10−2

10−3

10−4

10−5

Std. Dev. of ε(X; u)

100 101 102 103 104

N

10−2

10−3

10−4

10−5

Std. Dev. of u(X ′) Errors

53

Table 2: Performance of Different Networks in Solving the Linear Model

Success
(%)

Parameters
(Thousands, K)

Time
(s)

Train MSE
(ε)

Val MSE
(ε)

Test MSE
(ε)

Policy Error
(ϵrel)

Group Description

Identity Baseline 48% 49.4 28 6.7e-07 4.9e-07 5.0e-07 0.10%

Moments

Baseline: Moments (1,2,3,4) 59% 50.3 36 9.0e-07 8.7e-07 1.2e-06 0.13%

Moments (1,2) 54% 50.0 33 1.0e-06 8.7e-07 1.0e-06 0.12%

Very Shallow (1 layer) 0% 0.8 - - - - -

Deep Sets

Baseline: L= 4 97% 199.6 17 1.3e-06 3.6e-07 3.6e-07 0.09%

L = 2 93% 201.1 17 1.3e-06 4.0e-07 4.3e-07 0.09%

L = 16 93% 204.2 14 1.5e-06 3.5e-07 3.5e-07 0.10%

Deep (ϕ : 2 layers, ρ : 4 layers) 100% 215.9 25 2.0e-06 3.8e-07 3.7e-07 0.10%

Shallow (ϕ : 1 layer, ρ : 2 layers) 1% 68.0 16 1.6e-07 3.3e-07 3.5e-07 0.10%

54

Table 3: Nonlinear Model Performance

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

group description

ϕ(Moments)

Baseline 26 49.8 6.0e-06 5.0e-06 3.8e-06

Moments (1,2) 27 49.5 8.0e-06 5.1e-06 3.6e-06

Very Shallow (1 layer) 252 0.6 8.3e-06 1.4e+00 5.0e-06

Thin (32 nodes) 66 3.2 1.1e-05 9.7e-06 4.4e-06

ϕ(ReLU)

Baseline 60 67.1 1.4e-05 4.7e-06 3.3e-06

L = 8 73 68.1 1.1e-05 4.9e-06 2.0e-06

L = 16 72 70.2 1.5e-05 5.4e-06 1.7e-06

Very Shallow (ϕ, ρ : 1 layer) 136 1.4 8.9e-06 4.8e+06 4.9e-06

Shallow (ϕ, ρ: 2 layers) 47 34.3 1.0e-05 9.2e-06 2.8e-06

Thin (ϕ, ρ :32 nodes) 52 4.5 1.3e-05 6.0e-06 2.7e-06

55

Parameters

• γ = 90, β = 0.95, σ = 0.005, η = 0.001.

56

	Background: Deep learning for functional equations
	Application
	Symmetry and Permutation Invariant
	High-dimensional expectation: concentration of measures
	Solving the Model
	Implicit bias, Generalization, and Stationarity.
	Conclusions
	Appendix

