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Motivation, Question, and

Contribution



Motivation

In the long run, we are all dead—J.M. Keynes, A Tract on Monetary Reform (1923)

• Numerical solutions to dynamical systems are central to many quantitative fields in economics.

• Many dynamical systems in economics are boundary value problems:

1. The boundary is at infinity.

2. The values at the boundary are potentially unknown.

• Resulting from forward looking behavior of agents.

• Examples include the transversality and the no-bubble condition.

• Without them, the problems are ill-posed and have infinitely many solutions:

• These forward-looking boundary conditions are a key limitation on increasing dimensionality.
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Question

Question:

Can we (economists and agents) ignore these long-run boundary conditions and still have accurate

short/medium-run dynamics disciplined by the long-run conditions?
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Contribution

1. Yes, it is possible to meet long-run boundary conditions without strictly enforcing them as a

constraint on the model’s dynamics.

• We show how using Machine Learning (ML) methods achieve this.

• This is due to the inductive bias of ML methods.

• In this paper focusing on deep neural networks

2. We argue the inductive bias provides a foundation for modeling forward-looking behavioral agents

with self-consistent expectations.

• Easy to compute.

• Provides short-run accuracy.
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Background: Economic Models,

Deep learning and inductive bias



Economic Models: functional equations

Many theoretical models can be written as functional equations:

• Economic object of interest: f , where f : X → R ⊆ RN

• e.g., asset price, investment choice, best-response, etc.

• Domain of f : X
• e.g. space of dividends, capital, opponents state or time in sequential models.

• The “Economics model” error: ℓ
(
x , f

)
• e.g., Euler and Bellman residuals, equilibrium FOCs.

Then a solution is f ∗ ∈ F where ℓ(x , f ∗) = 0 for all x ∈ X .
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Approximate solution: deep neural networks

1. Sample X : D = {x1, · · · , xN}
2. Pick a deep neural network fθ(·) ∈ H(θ):

• θ: parameters for optimization (i.e., weights and biases).

3. To find an approximation for f solve:

min
θ

1

N

∑
x∈D

∥ ℓ(x , fθ)︸ ︷︷ ︸
Econ model error

∥22

• Deep neural networks are highly over-parameterized.

• Formally, |θ| ≫ N
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Over-parameterized interpolation

• Being over-parameterized (|θ| ≫ N), the optimization problem can have many solutions.

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
fθ∈H

1

N

∑
x∈D

∥ℓ(x , fθ)∥22

• But which fθ?

• Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm ψ

min
fθ∈H

||fθ||ψ

s.t. ℓ(x , fθ) = 0, for all x ∈ D

• That is what we mean by inductive bias (see Belkin, 2021 and Ma and Yang, 2021).

• Characterizing ψ (e.g., Sobolev norms or semi-norms?) is an active research area in ML. 6



Over-parameterization and smooth interpolation

• Intuition: biased toward solutions which are flatter and have smaller derivatives
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Deep Learning: “Fit Without Fear”?

• “I remember my friend Johnny von

Neumann used to say, with four

parameters I can fit an elephant, and

with five I can make him wiggle his

trunk.” Enrico Fermi

• “The best way to solve the problem

from practical standpoint is you build

a very big system ... basically you

want to make sure you hit the zero

training error” Ruslan Salakhutdinov 0 1 2 3 4 5 6
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Deep Learning: random initialization and non-convex optimization
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Intuition of the paper

• Minimum-norm inductive bias:

• Over-parameterized models (e.g., large neural networks)

interpolate the train data.

• They are biased towards interpolating functions with

smaller norms.

• So they dont like explosive functions.

• Violation of economic boundary conditions:

• Sub-optimal solutions diverge (explode) over time.

• This is due to the saddle-path nature of econ problems.

• The long-run boundary conditions rule out the explosive

solutions.

Saddle path
Divergent paths
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Outline



Outline of the talk

To explore how we can ignore the long-run boundary conditions, we show deep learning solutions to

1. Classic linear-asset pricing model.

2. Sequential formulation of the neoclassical growth model.

3. Sequential formulation of the neoclassical growth model with non-concave production function.

4. Equivalent for a recursive formulation of the neoclassical growth model.
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Linear asset pricing and the

no-bubble condition



Linear asset pricing: setup

• The risk-neutral price, p(t), of a claim to a stream of dividends, y(t), is given by the recursive

equation:

p(t) = y(t) + βp(t + 1), for t = 0, 1, · · ·

• β < 1, and y(t) is exogenous, y(0) given.

• This is a two dimensional dynamical system with unknown initial condition p(0). This problem is

ill-posed.

• A family of solutions

p(t) = pf (t)︸ ︷︷ ︸
fundamentals

+ ζ

(
1

β

)t

︸ ︷︷ ︸
explosive bubble

• pf (t) ≡
∑∞
τ=0 β

τy(t + τ). Each solution corresponds to a different ζ > 0.
12



Linear asset pricing: the long-run boundary condition

• Long-run boundary condition that rule out the

explosive bubbles and chooses ζ = 0

lim
t→∞

βtp(t) = 0.

• Any norm that preserve monotonicity, like Lp
and Sobolev (semi-)norms

min
ζ≥0

∥p∥ψ = ∥pf ∥ψ

• Ignoring the no-bubble condition and using a

deep neural network provides an accurate

approximation for pf (t).
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Linear asset pricing: numerical method

• Sample for time: D = {t1, · · · , tN}.
• Generating the dividend process: y(t + 1) = c + (1 + g)y(t), given y(0).

• An over-parameterized neural network pθ(t), ignore the non-bubble condition and solve

min
θ

1

N

∑
t∈D

[pθ(t)− y(t)− βpθ(t + 1)]2

• This minimization should provide an accurate short- and medium-run approximation for price based

on the fundamentals pf (t).
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Linear asset pricing: results

• Two cases: g < 0 and g > 0.

• Relative errors: εp(t) ≡ pθ(t)−pf (t)
pf (t)

.

• for g > 0: pθ(t) = eϕtNNθ(t), ϕ is “learnable”.

• Results for 100 different seeds (initialization of

the parameters):

• important for non-convex optimizations.

• Very accurate short- and medium-run

approximation.
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Sequential neoclassical growth

model and the transversality

condition



Neoclassical growth model: setup

• Total factor productivity z(t) exogenously given, capital k(t) with given k(0), consumption c(t),

production function f (·), depreciation rate δ < 1, discount factor β :

k(t + 1) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t)︸ ︷︷ ︸
feasibility constraint

,

c(t + 1) = βc(t)
[
z(t + 1)1−αf ′

(
k(t + 1)

)
+ 1− δ

]︸ ︷︷ ︸
Euler equation

.

• This is a three dimensional dynamical system with unknown initial condition c(0). This problem is

ill-posed.

• A family of solutions, each solution corresponds to a different c(0). Only one of them is the optimal

solution.
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Neoclassical growth model: the long-run boundary condition

• To rule out sub-optimal solutions,

transversality condition

lim
t→∞

βt k(t + 1)

c(t)
= 0.

• Using a deep neural network and

ignoring the transversality condition

provides a an accurate approximation

for the optimal capital path.
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Neoclassical growth model: numerical method

• Sample for time: D = {t1, · · · , tN}.
• Generating the TFP process: z(t + 1) = (1 + g)z(t), given z(0).

• A over-parameterized neural network kθ(t),

• Given kθ(t), define the consumption function c(t; kθ) = z(t)1−αf (kθ(t)) + (1− δ)kθ(t)− kθ(t + 1)

• Ignore the transversality condition and solve

min
θ∈Θ

[
1

N

∑
t∈D

c(t + 1; kθ)

c(t; kθ)
− β

[
z(t + 1)1−αf ′

(
kθ(t + 1)

)
+ (1− δ)

]
︸ ︷︷ ︸

Euler residuals


2

+

 kθ(0)− k0︸ ︷︷ ︸
Initial condition residual

2 ]

• This minimization should provide an accurate short- and medium-run approximation for the optimal

capital and consumption path.
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Neoclassical growth model, no TFP growth: results

• g = 0, z(0) = 1.

• εk(t) ≡ kθ(t)−k(t)
k(t) , and εc(t) ≡ c(t;kθ)−c(t)

c(t)

• Benchmark solution: value function iteration.

• Results for 100 different seeds.

• Very accurate short- and medium-run

approximation.
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Neoclassical growth model with TFP growth: results

• g > 0 and z(0) = 1.

• kθ(t) = eϕtNNθ(t), ϕ is ”learnable”.

• Results for 100 different seeds.

• Very accurate short- and medium-run

approximation.
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But, seriously “in the long run, we are all dead”

• So far, we have used long time-horizon

D = {0, 1, · · · , 29}.
• In other methods, choosing the time-horizon T

is a challenge:

• Too large → accumulation of errors, and

numerical instability. We don’t have that

problem.

• Too small → convergence to the steady state

too quickly.

• An accurate short-run solution, even for a

medium-sized T .
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Neoclassical growth model: multiple steady-states and hysteresis

• When there are multiple steady states with saddle-path stability, each with its domain of attraction:

• Can the inductive bias detect there are multiple basins of attraction?

• How does the inductive bias move us toward the correct steady state for a given initial condition?

• Consider a non-concave production function:

f (k) ≡ amax{kα, b1kα − b2}

• Two steady-states k∗
1 and k∗

2 .

• The same numerical procedure.
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Neoclassical growth model with non-concave production function: results

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Capital: kθ(t)

k∗1
k∗2

0 10 20 30 40 50
Time(t)

0.3

0.4

0.5

0.6

0.7

0.8

Consumption: cθ(t)

c∗1
c∗2

• Different initial conditions in k0 ∈ [0.5, 1.75] ∪ [2.75, 4].

• In the vicinity of k∗
1 and k∗

2 the paths converge to the right steady-states.

23



Deep learning is not the only option: kernels

• Deep learning might be too “spooky”.

• We can use kernels, K (·, ·), instead of neural

networks and control the RKHS norms. For

instance:

dk

dt
=

N∑
i=1

αk
i K (t, ti ),

dc

dt
=

N∑
i=1

αc
i K (t, ti )

• The same results, theoretical guarantees, very

fast and robust.
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Extensions in the paper

• Sequential models:

• Shorter time-horizons.

• Misspecification of growth.

• Recursive neoclassical growth model

• Accurate short- and medium-run dynamics.

• Accurate solutions even with TFP growth.

• Deep learning solutions can go very wrong

• We should use the information in the transversality condition to know what to approximate.
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Deep learning solutions can be misleading: approximating capital vs. consump-

tion

• Capital k is the state variable.

• Two options: approximating capital policy k ′
θ(k)

or cθ(k)

• left panels: results for k ′
θ(k) approximation.

• Right panels: results for cθ(k) approximation.

• Only the left panel results are correct. k ′
θ(k) has

a fixed point at the right steady state.

• However, the wrong solution has lower Euler

residuals.
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Conclusion

• Short- and medium-run accurate solutions can be obtained without strictly enforcing the long-run

boundary conditions on the model’s dynamics.

• Long-run (global) conditions can be replaced with appropriate regularization (local) to achieve

optimal solutions, hence the title of the paper.

• Inductive bias provides a foundation for modeling forward-looking behavioral agents with

self-consistent expectations.
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Discussion: where to go from here?

• Can inductive bias/regularization be thought of as an equilibrium selection device?

• In this paper it is used to select solutions.

• This method (mostly the kernel method) can be used for sampling high-dimensional state spaces

when there is stochasticity.

• Solve the deterministic in short-run and use the points as sample of the state-space.

• Then solve the stochastic problem.

28



Appendix



Deep Learning: random initialization and non-convex optimization
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