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Motivation, Question, and
Contribution



In the long run, we are all dead—J.M. Keynes, A Tract on Monetary Reform (1923)

Numerical solutions to dynamical systems are central to many quantitative fields in economics.

Many dynamical systems in economics are boundary value problems:

1. The boundary is at infinity.

2. The values at the boundary are potentially unknown.

Resulting from forward looking behavior of agents.

Examples include the transversality and the no-bubble condition.

Without them, the problems are ill-posed and have infinitely many solutions:

e These forward-looking boundary conditions are a key limitation on increasing dimensionality.



Question:

Can we (economists and agents) ignore these long-run boundary conditions and still have accurate
short/medium-run dynamics disciplined by the long-run conditions?



Contribution

1. Yes, it is possible to meet long-run boundary conditions without strictly enforcing them as a
constraint on the model’s dynamics.
e We show how using Machine Learning (ML) methods achieve this.
e This is due to the inductive bias of ML methods.

e In this paper focusing on deep neural networks

2. We argue the inductive bias provides a foundation for modeling forward-looking behavioral agents
with self-consistent expectations.

e Easy to compute.

e Provides short-run accuracy.



Background: Economic Models,
Deep learning and inductive bias



Economic : functional equations

Many theoretical models can be written as functional equations:

e Economic object of interest: f, where f : X — R C RN

e e.g., asset price, investment choice, best-response, etc.

e Domain of f: X

e e.g. space of dividends, capital, opponents state or time in sequential models.

e The “Economics model” error: E(X, f)

e e.g., Euler and Bellman residuals, equilibrium FOCs.

Then a solution is f* € F where {(x,f*) =0 for all x € X.



Approximate solution: deep neural networks

1. Sample X: D ={xy, - ,xn}

2. Pick a family of parametric functions (e.g., deep neural networks) fy(-) € H(0):

e 0: parameters for optimization (i.e., weights and biases).

3. To find an approximation for f solve:

1 )
min~ SO0 (xh) I

xeD
€ Econ model error

e Deep neural networks are highly over-parameterized: formally,

0> N



Deep Neural Networks

Deep learning is highly-overparameterized H(©) (M > D) class of functions.

e Example: one layer neural network, fy : R — R:

fo(x) =Wsh -0 (W1 -x+b1) + b

W; € RPXQ, b € RPXl, W, € RlXP, and b, € R.

0 = {by, W, ba, W, } are the coefficients, in this example M = PQ + P + P + 1.
e o(-) is a nonlinear function applied element-wise (e.g., max{-,0}).

e Making it “deeper’ by adding another “layer’: fo(x) = W3 - o(Ws - (W - x + by) + by) + bs.



Over-parameterized interpolation

e Being over-parameterized (|| > N), the optimization problem can have many solutions.

e Since individual 6 are irrelevant it is helpful to think of optimization directly within H
min + S 10 )3
foeH N
x€D
e But which 7?7
e Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm

in[|f;
{J‘é%” 0|

s.t.l(x,fp) =0, forall xeD

e That is what we mean by inductive bias (see Belkin, 2021 and Ma and Yang, 2021).
Characterizing v (e.g., Sobolev norms or semi-norms?) is an active research area in ML. 7



Over-parameterization and smooth interpolation

e Intuition: biased toward solutions which are flatter and have smaller derivatives

« Training Data

Training Data
# of Parameters= 31
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Training Data
# of Parameters= 2.4 K

Training Data
# of Parameters= 12 K
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Deep Learning: “Fit Without Fea

e "/ remember my friend Johnny von
Neumann used to say, with four
parameters | can fit an elephant, and
with five | can make him wiggle his
trunk." Enrico Fermi

e “The best way to solve the problem
from practical standpoint is you build
a very big system ... basically you
want to make sure you hit the zero
training error” Ruslan Salakhutdinov

2.004
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1.50
1.25+
>1.004
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0.00+

Deep Learning: Fit Without the Fear of Over-parameterization?

e Training Data

# of Parameters = 33 K
—— # of Parameters = 322 K

0 1 2 3 4 5 6




Deep Learning: random initialization and non-convex optimization

Smooth Interpolation: Deep Neural Network with 33K Parameters
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Intuition of the paper

e Minimum-norm inductive bias:

e Over-parameterized models (e.g., large neural networks)
interpolate the train data.

e They are biased towards interpolating functions with
smaller norms.

e So they dont like explosive functions.

e Violation of economic boundary conditions:

e Sub-optimal solutions diverge (explode) over time.

e This is due to the saddle-path nature of econ problems.

e The long-run boundary conditions rule out the explosive
solutions.

—— Saddle path
--- Divergent paths
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Outline of the talk

To explore how we can ignore the long-run boundary conditions, we show deep learning solutions to

1. Classic linear-asset pricing model.

2. Sequential formulation of the neoclassical growth model.

w

. Sequential formulation of the neoclassical growth model with non-concave production function.

4. Equivalent for a recursive formulation of the neoclassical growth model.

12



Linear asset pricing and the
no-bubble condition



Linear asset pricing: setup

e The risk-neutral price, p(t), of a claim to a stream of dividends, y(t), is given by the recursive
equation:

p(t) =y(t)+ pp(t+1), fort=0,1,---

B <1, and y(t) is exogenous, y(0) given.

A two dimensional dynamical system with unknown initial condition p(0). This problem is ill-posed.

A family of solutions

o= s+ (2

fundamentals
explosive bubble

pr(t) = D07, B7y(t + 7). Each solution corresponds to a different ¢ > 0.

13



Linear asset pri condition

e Long-run boundary condition that rule out the
explosive bubbles and chooses ¢ = 0

plt) =pdt) + )"

o t
Jim, B°p(t) = 0. — g0
— p(t):{=0.1
3.0 p(t):=0.05
p(t):=0.025

e Any norm that preserve monotonicity, like L, >5

and Sobolev (semi-)norms .

min{|plly = llprlly

¢>0 1.5
1.0
e Ignoring the no-bubble condition and using a = T m = = = o
deep neural network provides an accurate Time()

approximation for pr(t).
14



Linear asset pricing: numerical method

Sample for time: D = {ty,- -, tn}.

Generating the dividend process: y(t+ 1) = ¢ + (1 + g)y(t), given y(0).

e An over-parameterized neural network py(t), ignore the non-bubble condition and solve

mln—Z[pg ﬁpg(t—l—l)]

teD

This minimization should provide an accurate short- and medium-run approximation for price based
on the fundamentals ps(t).
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Linear asset pricing: results

e Two cases: g < 0and g > 0.

— po()=pr(t)

e Relative errors: ep(f) pr ()

o for g > 0: pp(t) = e?*NNy(t), ¢ is “learnable”.

e Results for 100 different seeds (initialization of
the parameters):

e important for non-convex optimizations.

e Very accurate short- and medium-run
approximation.
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16



Learning the growth rate

9 approximation: §

0.4

0.3

0.2

0.1

0.0195 0.0200 0.0205 0.0210 0.0215 0.0220 0.0225
g

o g=¢e%—1.
e Slightly biased due to small sample size, i.e., D = {0,1,---,29}.
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Sequential neoclassical growth
model and the transversality
condition




Neoclassical growth model: setup

e Total factor productivity z(t) exogenously given, capital k(t) with given k(0), consumption c(t),
production function f(-), depreciation rate § < 1, discount factor 3 :

K(t+1) = 2(&)7F (k()) + (1 — )k(£) — c(t),
feasibility constraint
c(t+1) = Be(t) [z(t + 1) *F (k(t + 1)) +1— 6] .

Euler equation

e A three dimensional dynamical system with unknown initial condition ¢(0). This problem is ill-posed.

e A family of solutions, each solution corresponds to a different ¢(0). Only one of them is the optimal
solution.

18



Neoclassical growth model: the long-run boundary condition

e To rule out sub-optimal
solutions, transversality

condition
lim gt ———— k(t+1) =0.
t—00 C(t)

e Using a deep neural network
and ignoring the transversality
condition provides a an accurate
approximation for the optimal
capital path.

0.8

0.6

0.4

0.2

0.0

k(t): possible solutions of Euler and

—— Optimal Solution
K(t): c(0) = 0.3 ——
K(t): c(0) = 0.4

—— k(t): c(0) =05

—— k(t): c(0) = 0.64 -

0 5 10 15 20 25 30
Time(t)

c(t): possible solutions of Euler and feasibility

Optimal Solution
c(0) =0.3

c(0) = 0.4

— c(0) =

c(0) = 0.64

0 5 10 15 20 25 30
Time(t)
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Neoclassical growth model: numerical method

e Sample for time: D = {ty, -+, tn}.

TFP process: z(t + 1) = (14 g)z(t), given z(0).
e A over-parameterized neural network ky(t),

Given kg(t), define the consumption function c(t; ko) = z(t)*~*f(ko(t)) + (1 — 8)ke(t) — ko(t + 1)

Ignore the transversality condition and solve

min NZ ttieke) —Blz(t + 1) F (ke(t + 1)) + (1= 0)] | + kg(0) — ko

Initial condition residual
Euler residuals

This minimization should provide an accurate short- and medium-run approximation for the optimal
capital and consumption path.

20



Neoclassical growth model, no TFP growth: results

Capital and Consumption: ky(t) and co(t)

2.00
175

1.50

e g=0,z(0)=1. "

o g(t) = 7@(?&)}((0, and e.(t) = 7C(t;kce()t;c(t) :ju — 5 et

0.25
10 20 30 40 50

Benchmark solution: value function iteration. 0 R

Relative errors: &4(t) and &,(t)

Results for 100 different seeds. 0.008

0.006

e Very accurate short- and medium-run
0.004

approximation. /
0.002

0.000 —W/’/

0.002
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Neoclassical growth model with TFP growth: results

Capital: ko(t) Relative error: ex(f)
J— 0.0059— ¢, (#): median
— ky(t): median 7
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But, seriously “in the long run, we are all dead”

Capital: k(t) Relative error: =.(t)
2,009 === k() 0.000 \ — =i(t): median
. 5 —— k(t): median 5
e So far, we have used long time-horizon 5 ’ o
~0.010
D: {0,1. ‘29} 10 —0.015
125 AN ~0.020
e In other methods, choosing the time-horizon T 1w | oo
is a challenge: 07 1 g
e Too large — accumulation of errors, and Coom
0 5 10 15 0 5 10 15
numerical instability. We don’t have that Time(t) Time(t)
Consumption: &(t) Relative error: =,(t)
problem. 1] — -t) i

—— &(t): median 0.004
e Too small — convergence to the steady state 10 e

. 0.9 AN 0.002
too quickly. o \

0.000
0.7 ;
e An accurate short-run solution, even for a 06 | o0
medium-sized T. 08 ool —0.004
0.4 oo
0 5 10 15 0 5 10 15
Time(t) Time(t)



Do we need a dense and contiguous grid?

e We have used a dense D = {0,1,---,29}.

e What if
e D(Grid 1) = {0,1,2,4,6,8,12,16,20, 24,29}
e D(Grid 2) = {0,1,4,8,12,18,24,29}

e An accurate short-run solution, even for a sparse
grid.

10
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Neoclassical growth model: multiple steady-states and hysteresis

e When there are multiple steady states with saddle-path stability, each with its domain of attraction:

e Can the inductive bias detect there are multiple basins of attraction?
e How does the inductive bias move us toward the correct steady state for a given initial condition?

e Consider a non-concave production function:

f(k) = amax{k®, bik® — by}

f(k) = a max{k®%, b1k* — by}

e Two steady-states ki and k. — Production function

e The same numerical procedure.

Production

25
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Neoclassical growth model with i on: results

Capital: kq(t) Consumption: ¢y(t)
1
4.0 0.81 ! -
[ o
1 2
. 1
3.5 0.7 H
3.0 |
067 & i
2.54 1
1
i
2.0 0.5 !
i
1.5 !
0.4 1
1.0 [
i
05 031, L
0 10 20 30 40 50
Time(t) Time(t)

e Different initial conditions in kg € [0.5,1.75] U [2.75, 4].
o In the vicinity of k" and k3 the paths converge to the right steady-states.
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Deep learning is not the only
option




Deep learning is not the only option: k

3 ) " " How Inductive Bias in Kernel Methods Aligns with
e Deep learning might be too “spooky”. Optimality in Economic Dynamics
SUBMISSION 764
.. H ‘This paper examines the alignment of inductive biases in machine learning (ML), such as kernel machines,
e We can use kernels methods, K(-,-), instead of e i s st ofnducls b n i i () ok el i
economic models are often specified by differential equations with a mixture of easy-to-enforce initial
conditions and hard-to-enforce infinite horizon boundary conditions (e.g. transversality and no-ponzi-scheme
neura l networ ks an d contro l t h € R K H S norms. conditions). We investigate algorithms using ridgeless kernel methods trained to fulfill the differential equations
without explicitly fulfilling the boundary conditions. Our findings provide theoretical guarantees for cases
where the inductive biases of these ML models are sufficient conditions to fulfill the infinite-horizon conditions.

[ ] FOCU Si n g on co ntl nuous t | me eq u iva |e nt Of t h ese We then provide empirical evidence that ridgeless kernel methods are not only theoretically sound with

respect to economic assumptions, but may even dominate classic algorithms in low to medium dimensions.

problems.

. CONTENTS
e The same results, theoretical guarantees, very Abatract )
Contents 0
fa St a nd robust_ 1 In(rm‘l\\cnfu\ 1
2 Related Work 2
3 Setup 3
H 1 1 4 Method 5
e With J Perla, R Childers, and G Pleiss. 1 Method :
5.1 Asset Pricing 8
52 Neoclassical Growth Model 8
53 Neoclassical Growth Model with Multiple Steady-States 10
54 Other Examples 1
6 Conclusion 11

27



Optimal control framework

Consider the following problem arising in optimal control:

fr=rp(t) — p(t) © G (x(t), u(t), y(t))
0= H (x(2), u(t), (1))
x(0) = xo

e State variables x(t) € RM, initial condition x¢; co-state variables u(t) € RM; jump variables
y(t) €R”

e This problem is ill-posed and can have infinitely many solutions.

28



Transversality condition: an asymptotic boundary condition

lim e~ "x(t) ® pu(t) =0

t—o0

e The transversality condition is an asymptotic boundary condition.
e We typically assume a finite time horizon T and shoot for the finite steady state x*, pu*, and y*.

e This approach is straightforward in low dimensions but becomes significantly more challenging in
high-dimensional settings.

29



Optimal control framework: an example, Ramsey—Cass—Koopmans model

e Classic Ramsey—Cass—Koopmans

k(t) = f (k(t)) — c(t) — ok(t)
fu(t) = ru(t) — u(t) [f'(k(t)) — 9]

e f(-) is the production function, r discount rate, and § is the depreciation.

30



at does the violation of the transversality condition look li

e All paths solve the ordinarily differential
equations ans the algebraic equation.

e The solutions that violate the transversality 3
condition lim;_, o [t = 00 and lim;_ o pt = 00

e Diverges faster than e".

— x=0
— =0
--- Stable Manifold: u" (x)
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Kernel approximation

Approximating the derivatives with a kernel:

ot ot

~ ~

%(t) = xo + / ()dr,  B(t) = o+ / Mrdr, 9= 9o+ / §(r)dr,

0 0 0
N N N
()= ofK(t,t),  p(t)=> olK(tt), y(t)=> olK(tt)
j=1 j=1 j=1

® Xp is given.

7 3 X
® [y, Yo, OO,

e K(-,) is the kernel.

at, and o are learnable parameters.
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Approximate solution: Algorithm

min (Z &0 ||H+Z||u ||H>

x(t)eHM, p(t)eH
(e )EH”

e The objective function penalizes explosive paths.

e Constraints solve the "first order conditions” .

33



Application: Growth with human and physical capital, a mid-size problem

k(t) = i(t) — 0ck(t),  h(t) = in(t) — Snh(2),
fu(t) = rouc(t) — pw(t) [fic (k(t), h(t)) — k], f1n(t) = rpn(t) — pa(t) [fn (k(t), h(t)) — 0]
0=p(t)e(t) =1, 0= p(t) — pn(t)

for given initial conditions k(0) = ko, h(0) = hg, and two transversality conditions

I H —rt N H —rt
Oftllﬁn;ce k(t)ux(t), OftILngoe h(t)pn(t).

o x(t) = [k(t), h(E)] ", p(t) = [ua(2), (O], y(2) = Lik(t), in(E), ()]
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e Accurate short- and medium-run solution.

e The solution “learns” the steady state.

3.00

Physical Capital: xi(t)

Consumption: yc(t)

Zo1ss
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Human Capital Invest;

Cosstate Variable: uy(t)
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Extrapolation/Interpolation

20 0 60 Et 100
Time
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Time
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Time Time
— 7»(0) Kermel Approximation | _ —— ju(t): Kernel Approximation
Extrapolation/Interpolation | £ Extrapolation/Interpolation
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£10
4
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]
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8
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Time
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Extrapolation/Interpolation
[ 20 £ 100
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Back to deep learning: Recursive
neoclassical growth model and
the transversality condition




Recursive formulation (with a possible BGP)

Skipping the Bellman formulation and going to the first order conditions in the state space , i.e., (k, z)

u'(c(k,z)) = Bu'(c(K (k,z), z'))[z’lfaf/(k’(k,z)) +1-4]
K (k,z) = 2""f(k) + (1 — 0)k — c(k, z)

Z=(1+g)z
k'>0
0= lim 5TU/(CT)/(T+1 V(kg,Zg) eX
T—oo
e Preferences: u(c) = Cl;_ﬂ(:l, o >0, limcou/(c) =00, and g € (0,1).

e Cobb-Douglas production function: f(k) = k*, a € (0,1) before scaling by TFP z.
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Interpolation problem: the optimization problem

o A set of points D = {ki,....kn,} X {z1,...,2pn, }.

e A family of over-parameterized functions k'(-,-; 0) € H(©O).
e Use the feasibility condition and define c(k, z; k') = 2}~ f (k) + (1 — )k — k'(k, z).

In practice we minimize the Euler residuals:

~Bl(L+8)2)" (K (kz0) +1 -0

o c(k,z K 60))
Q‘ei@’}ul)(z ( k,z; k 9>

k.z)eD | U’ (c(k’(k, z;0), (1 +g)z; k'(; 0))>

Euler residual

37



Interpolation problem: wi versality condition

e This minimization does not contain the transversality condition.

e Without the transversality condition it has more than one minima.
e No explicit norm regularization.

e Does the implicit bias weed out the solutions that violate the transversality condition? Let's analyze

this more rigorously.
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Is the transversality condition necessary? Case of g =0,z =1

104 — ' (k): Violating TVC
— K'(k)

=== 45 degree line

Capital(k)
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Results: one initial condition

Capital: k(1) Relative error: =4(t)
25 ool | - ii:; E;:;«:)l::;ll:\‘ul::l”r‘!(l‘t':‘lyll:\‘n [ ] PICklng D = [08, 25] X {1} and ko = 04 € D
| s - on
vl | is “extrapolation” a =3, 0 =1, #=0.9, and
2.0 |
— (t): median 003] | g = 0..
15 R 0] |
Conv(D), 0.029 1 . . H
» i e Low generalization errors, even without
0.011 1
ool § imposing transversality condition.
05 :
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0.6 0019 4
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Time(t) Time(t)
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Far from the steady state

Capital: k(t) Relative error: e(t)
xtrapolation 1 1 f— &
20 0.00 \ - E;i»ql)lju:m, L] PICkIng D= [08, 15] o k ¢ [08, 15]
—0.02

1.8 N\, . .
; oo e A local grid around the kg is enough.
11 ; e e Accurate solutions in the interpolation region.
12 ~0.08 R,
10 N o e Generalization errors are not bad.
L -
0ot : e L - — e Results for 100 different seeds (initialization of

Time(t) Time(t)

Consumption: &(t) Relative error: ,(t) the parameters)
11{ — é(t) —msg === Extrapolation
-—— ) AN —— Tnterpolation
------------ 0.01 J \
10 = \
09 i o 7 0.00 \\\
0.8 - ,,"/ \\\
o1 S 0.01 AN
0.7 \\
06 0.02 \\\
0.5 i
0 5 10 15 0 5 10 15
Time(t) Time(t)

41



Growing TFP

o

2.5

1.0

Capital: k(t)

Relative error

e(t)

0.02
— ) === Extrapolation
0.00] £ —— Interpolation
—0.02 S
Sy
0.04 N
\
\.
N
~0.06 &
N
—0.08
~0.10
~0.12
0 10 20 30 40 50 0 10 20 30 40 50
Time(t) Time(t)
Consumption: é(t) Relative error: <,(t)
— i) === Extrapolation
00051 — Iuterpolation
i
H
0.000 :V\_/ ~~~~~~~ .
' N\,
1 S
! AN
—0.0051 | 1
i
~0.010
0.015
~0.020
0 10 20 30 40 50 0 10 20 30 40 50
Time(t) Time(t)

Picking D = [0.8,3.5] x [0.8,1.8] but now
g = 0.02.

Choosing K'(k,z;0) = zNN(X, z; 6).

e Here we used economic intuition to design the

H(O).
Relative errors are very small inside the grid.

Small generalization errors.
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Are Euler and Bellman residuals
enough?




Euler residuals are not en

e We picked a grid D and approximated k’(k) with an over-parameterized function.

e The approximate solutions do not violate the transversality condition.

e What happens if we approximate the consumption functions c(k) with an over-parameterized
function.

e \We get an interpolating solution, i.e, very small Euler residuals.

e However, the solutions violate the transversality condition.

Intuition: consumption functions with low derivatives leads to optimal policies for capital with big
derivatives.
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Small Euler residuals can be misleading

10°°
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10-10

Euler residuals squared: approximating &' (k)
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AV

1077
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— K(k): median — K(k): median
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=== 45 degree line

=== 45 degree line

capital(k)

capital(k)

e Left panels: approximating k’(k) with a deep
neural network.

e The solutions do not violate the TVC.

o k'(k) intersects with 45° line at k* = 2.

e Right panels: approximating c(k) with a deep
neural network.
e The solutions violate the TVC.
e Kk'(k) intersects with 45° line at kmax ~ 30.

e Euler residuals are systematically lower.
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Can regularization fix this problem?

1077
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Euler residuals®

NN = e(k), without regularization

Euler residuals®

NN = e(k), with regularization
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K(k) : NN = c(k), without regularization K (k) : NN = ¢(k), with regularization
— Kk 409 — Kb

=== 45 degree line
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Left panels: approximating c(k) with a deep
neural network without explicit regularization.

What does happen with L, regularization?
e Penalizing >, o 6?.

Right panels: approximating c(k) with a deep
neural network with explicit regularization.

Using deep learning requires understanding the
inductive bias and economic theory.
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Conclusion

e Short- and medium-run accurate solutions can be obtained without strictly enforcing the long-run

boundary conditions on the model's dynamics.

e Long-run (global) conditions can be replaced with appropriate regularization (local) to achieve
optimal solutions, hence the title of the paper.

e Inductive bias provides a foundation for modeling forward-looking behavioral agents with

self-consistent expectations.
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e to go from here?

e Can inductive bias/regularization be thought of as an equilibrium selection device?

e In this paper it is used to select solutions.

e This method (mostly the kernel method) can be used for sampling high-dimensional state spaces
when there is stochasticity.

e Solve the deterministic in short-run and use the points as sample of the state-space.

e Then solve the stochastic problem.
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Appendix




Deep Learning: random initialization and non-convex optimization

Before training: Initialization with Uniform Distribution After training: Initialization with Uniform Distribution
2.0 e o o ° o o 2.0
. .
.
1.5 . 1.5
1.0 ° 1.0
0.5 0.5
>~ 00 W/—/— > 00
17
~05 -0.5
1.0 -1.0
s e Training Data s e Training Data
Median ’ Median
10th-90th Quantiles 10th-90th Quantiles
20 -2.0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X
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Results: initial conditions over the state space

Capital: k(t) Consumption: é(t)

0.5 2.45 >
0 10 20 30 40 50 0 10 20 30 40 50
Time(t) Time(t)

e The solution has to satisfy the transversality condition for all points in X’
IimrﬁmﬁTu’(c(T))k(T—&— 1)=0 VkeX
e Three different initial condition for capital, all outside of X.
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