
Spooky Boundaries at a Distance:

Inductive Bias, Dynamic Models, and Behavioral Macro

Mahdi Ebrahimi Kahou1 Jesús Fernández-Villaverde2 Sebastián Gómez-Cardona3

Jesse Perla4 Jan Rosa4

–

1Bowdoin College

2University of Pennsylvania

3Morningstar, Inc.

4University of British Columbia

Motivation, Question, and

Contribution

Motivation

In the long run, we are all dead—J.M. Keynes, A Tract on Monetary Reform (1923)

• Numerical solutions to dynamical systems are central to many quantitative fields in economics.

• Many dynamical systems in economics are boundary value problems:

1. The boundary is at infinity.

2. The values at the boundary are potentially unknown.

• Resulting from forward looking behavior of agents.

• Examples include the transversality and the no-bubble condition.

• Without them, the problems are ill-posed and have infinitely many solutions:

• These forward-looking boundary conditions are a key limitation on increasing dimensionality.

1

Question

Question:

Can we (economists and agents) ignore these long-run boundary conditions and still have accurate

short/medium-run dynamics disciplined by the long-run conditions?

2

Contribution

1. Yes, it is possible to meet long-run boundary conditions without strictly enforcing them as a

constraint on the model’s dynamics.

• We show how using Machine Learning (ML) methods achieve this.

• This is due to the inductive bias of ML methods.

• In this paper focusing on deep neural networks

2. We argue the inductive bias provides a foundation for modeling forward-looking behavioral agents

with self-consistent expectations.

• Easy to compute.

• Provides short-run accuracy.

3

Background: Economic Models,

Deep learning and inductive bias

Economic Models: functional equations

Many theoretical models can be written as functional equations:

• Economic object of interest: f , where f : X → R ⊆ RN

• e.g., asset price, investment choice, best-response, etc.

• Domain of f : X
• e.g. space of dividends, capital, opponents state or time in sequential models.

• The “Economics model” error: ℓ
(
x , f
)

• e.g., Euler and Bellman residuals, equilibrium FOCs.

Then a solution is f ∗ ∈ F where ℓ(x , f ∗) = 0 for all x ∈ X .

4

Approximate solution: deep neural networks

1. Sample X : D = {x1, · · · , xN}
2. Pick a family of parametric functions (e.g., deep neural networks) fθ(·) ∈ H(θ):

• θ: parameters for optimization (i.e., weights and biases).

3. To find an approximation for f solve:

min
θ

1

N

∑
x∈D

∥ ℓ(x , fθ)︸ ︷︷ ︸
Econ model error

∥22

• Deep neural networks are highly over-parameterized: formally, |θ| ≫ N

5

Deep Neural Networks

Deep learning is highly-overparameterized H(Θ) (M ≫ D) class of functions.

• Example: one layer neural network, fθ : RQ → R:

fθ(x) = W2 · σ (W1 · x + b1) + b2

• W1 ∈ RP×Q , b1 ∈ RP×1, W2 ∈ R1×P , and b2 ∈ R.

• θ ≡ {b1,W1, b2,W2} are the coefficients, in this example M = PQ + P + P + 1.

• σ(·) is a nonlinear function applied element-wise (e.g., max{·, 0}).

• Making it “deeper” by adding another “layer”: fθ(x) ≡ W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3.

6

Over-parameterized interpolation

• Being over-parameterized (|θ| ≫ N), the optimization problem can have many solutions.

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
fθ∈H

1

N

∑
x∈D

∥ℓ(x , fθ)∥22

• But which fθ?

• Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm ψ

min
fθ∈H

||fθ||ψ

s.t. ℓ(x , fθ) = 0, for all x ∈ D

• That is what we mean by inductive bias (see Belkin, 2021 and Ma and Yang, 2021).

• Characterizing ψ (e.g., Sobolev norms or semi-norms?) is an active research area in ML. 7

Over-parameterization and smooth interpolation

• Intuition: biased toward solutions which are flatter and have smaller derivatives

0 1 2 3 4 5
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data
of Parameters= 31

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data
of Parameters= 2.4 K

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data
of Parameters= 12 K

8

Deep Learning: “Fit Without Fear”?

• “I remember my friend Johnny von

Neumann used to say, with four

parameters I can fit an elephant, and

with five I can make him wiggle his

trunk.” Enrico Fermi

• “The best way to solve the problem

from practical standpoint is you build

a very big system ... basically you

want to make sure you hit the zero

training error” Ruslan Salakhutdinov 0 1 2 3 4 5 6
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

Deep Learning: Fit Without the Fear of Over-parameterization?

Training Data
of Parameters = 33 K
of Parameters = 322 K

9

Deep Learning: random initialization and non-convex optimization

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Smooth Interpolation: Deep Neural Network with 33K Parameters

Training Data
Median
10th-90th Quantiles

Different initialization

10

Intuition of the paper

• Minimum-norm inductive bias:

• Over-parameterized models (e.g., large neural networks)

interpolate the train data.

• They are biased towards interpolating functions with

smaller norms.

• So they dont like explosive functions.

• Violation of economic boundary conditions:

• Sub-optimal solutions diverge (explode) over time.

• This is due to the saddle-path nature of econ problems.

• The long-run boundary conditions rule out the explosive

solutions.

Saddle path
Divergent paths

11

Outline

Outline of the talk

To explore how we can ignore the long-run boundary conditions, we show deep learning solutions to

1. Classic linear-asset pricing model.

2. Sequential formulation of the neoclassical growth model.

3. Sequential formulation of the neoclassical growth model with non-concave production function.

4. Equivalent for a recursive formulation of the neoclassical growth model.

12

Linear asset pricing and the

no-bubble condition

Linear asset pricing: setup

• The risk-neutral price, p(t), of a claim to a stream of dividends, y(t), is given by the recursive

equation:

p(t) = y(t) + βp(t + 1), for t = 0, 1, · · ·

• β < 1, and y(t) is exogenous, y(0) given.

• A two dimensional dynamical system with unknown initial condition p(0). This problem is ill-posed.

• A family of solutions

p(t) = pf (t)︸ ︷︷ ︸
fundamentals

+ ζ

(
1

β

)t

︸ ︷︷ ︸
explosive bubble

• pf (t) ≡
∑∞
τ=0 β

τy(t + τ). Each solution corresponds to a different ζ > 0.

13

Linear asset pricing: the long-run boundary condition

• Long-run boundary condition that rule out the

explosive bubbles and chooses ζ = 0

lim
t→∞

βtp(t) = 0.

• Any norm that preserve monotonicity, like Lp
and Sobolev (semi-)norms

min
ζ≥0

∥p∥ψ = ∥pf ∥ψ

• Ignoring the no-bubble condition and using a

deep neural network provides an accurate

approximation for pf (t).

0 5 10 15 20 25 30
Time(t)

1.0

1.5

2.0

2.5

3.0

p(t) = pf(t) + (1)t

pf(t) : = 0
p(t) : = 0.1
p(t) : = 0.05
p(t) : = 0.025

14

Linear asset pricing: numerical method

• Sample for time: D = {t1, · · · , tN}.
• Generating the dividend process: y(t + 1) = c + (1 + g)y(t), given y(0).

• An over-parameterized neural network pθ(t), ignore the non-bubble condition and solve

min
θ

1

N

∑
t∈D

[pθ(t)− y(t)− βpθ(t + 1)]2

• This minimization should provide an accurate short- and medium-run approximation for price based

on the fundamentals pf (t).

15

Linear asset pricing: results

• Two cases: g < 0 and g > 0.

• Relative errors: εp(t) ≡ pθ(t)−pf (t)
pf (t)

.

• for g > 0: pθ(t) = eϕtNNθ(t), ϕ is “learnable”.

• Results for 100 different seeds (initialization of

the parameters):

• important for non-convex optimizations.

• Very accurate short- and medium-run

approximation.

0 10 20 30 40 50
Time(t)

0.85

0.90

0.95

1.00

1.05

Prices: pθ(t)

pf (t)

pθ(t): median

0 10 20 30 40 50
Time(t)

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

Relative errors: εp(t)

εp(t): median

0 10 20 30 40 50
Time(t)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Price: pθ(t)

pf (t)

pθ(t): median

0 10 20 30 40 50
Time(t)

0.00

0.01

0.02

0.03

0.04

Relative error: εp(t)

εp(t): median

16

Learning the growth rate

0.0190 0.0195 0.0200 0.0205 0.0210 0.0215 0.0220 0.0225
ĝ

0.0

0.1

0.2

0.3

0.4

0.5
g approximation: ĝ

• ĝ = eϕ − 1.

• Slightly biased due to small sample size, i.e., D = {0, 1, · · · , 29}.

17

Sequential neoclassical growth

model and the transversality

condition

Neoclassical growth model: setup

• Total factor productivity z(t) exogenously given, capital k(t) with given k(0), consumption c(t),

production function f (·), depreciation rate δ < 1, discount factor β :

k(t + 1) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t)︸ ︷︷ ︸
feasibility constraint

,

c(t + 1) = βc(t)
[
z(t + 1)1−αf ′

(
k(t + 1)

)
+ 1− δ

]︸ ︷︷ ︸
Euler equation

.

• A three dimensional dynamical system with unknown initial condition c(0). This problem is ill-posed.

• A family of solutions, each solution corresponds to a different c(0). Only one of them is the optimal

solution.

18

Neoclassical growth model: the long-run boundary condition

• To rule out sub-optimal

solutions, transversality

condition

lim
t→∞

βt k(t + 1)

c(t)
= 0.

• Using a deep neural network

and ignoring the transversality

condition provides a an accurate

approximation for the optimal

capital path.

0 5 10 15 20 25 30
Time(t)

0

5

10

15

20

25
k(t): possible solutions of Euler and feasibility

Optimal Solution
k(t) : c(0) = 0.3
k(t) : c(0) = 0.4
k(t) : c(0) = 0.5
k(t) : c(0) = 0.64

0 5 10 15 20 25 30
Time(t)

0.0

0.2

0.4

0.6

0.8

1.0

c(t): possible solutions of Euler and feasibility

Optimal Solution
c(0) = 0.3
c(0) = 0.4
c(0) = 0.5
c(0) = 0.64

19

Neoclassical growth model: numerical method

• Sample for time: D = {t1, · · · , tN}.
• TFP process: z(t + 1) = (1 + g)z(t), given z(0).

• A over-parameterized neural network kθ(t),

• Given kθ(t), define the consumption function c(t; kθ) = z(t)1−αf (kθ(t)) + (1− δ)kθ(t)− kθ(t + 1)

• Ignore the transversality condition and solve

min
θ∈Θ

[
1

N

∑
t∈D

c(t + 1; kθ)

c(t; kθ)
− β

[
z(t + 1)1−αf ′

(
kθ(t + 1)

)
+ (1− δ)

]
︸ ︷︷ ︸

Euler residuals


2

+

 kθ(0)− k0︸ ︷︷ ︸
Initial condition residual

2]

• This minimization should provide an accurate short- and medium-run approximation for the optimal

capital and consumption path.

20

Neoclassical growth model, no TFP growth: results

• g = 0, z(0) = 1.

• εk(t) ≡ kθ(t)−k(t)
k(t) , and εc(t) ≡ c(t;kθ)−c(t)

c(t)

• Benchmark solution: value function iteration.

• Results for 100 different seeds.

• Very accurate short- and medium-run

approximation.

0 10 20 30 40 50
Time(t)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Capital and Consumption: kθ(t) and cθ(t)

kθ(t): median

cθ(t): median

k(t)

c(t)

0 10 20 30 40 50
Time(t)

−0.002

0.000

0.002

0.004

0.006

0.008

Relative errors: εk(t) and εc(t)

εk(t): median

εc(t): median

1.95

2.00

21

Neoclassical growth model with TFP growth: results

• g > 0 and z(0) = 1.

• kθ(t) = eϕtNNθ(t), ϕ is ”learnable”.

• Results for 100 different seeds.

• Very accurate short- and medium-run

approximation.

0 10 20 30 40 50
Time(t)

1

2

3

4

Capital: kθ(t)

k(t)

kθ(t): median

0 10 20 30 40 50
Time(t)

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

Relative error: εk(t)

εk(t): median

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

Consumption: cθ(t)

c(t)

cθ(t): median

0 10 20 30 40 50
Time(t)

−0.003

−0.002

−0.001

0.000

0.001

Relative error: εc(t)

εc(t): median

4.3

4.4

2.50

2.55

2.60

22

But, seriously “in the long run, we are all dead”

• So far, we have used long time-horizon

D = {0, 1, · · · , 29}.
• In other methods, choosing the time-horizon T

is a challenge:

• Too large → accumulation of errors, and

numerical instability. We don’t have that

problem.

• Too small → convergence to the steady state

too quickly.

• An accurate short-run solution, even for a

medium-sized T .

0 5 10 15
Time(t)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Capital: k̂(t)

k(t)

k̂(t): median

0 5 10 15
Time(t)

−0.040

−0.035

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

Relative error: εk(t)

εk(t): median

0 5 10 15
Time(t)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Consumption: ĉ(t)

c(t)

ĉ(t): median

0 5 10 15
Time(t)

−0.004

−0.002

0.000

0.002

0.004

Relative error: εc(t)

εc(t): median

1.70

1.75

0.96

0.98

1.00

23

Do we need a dense and contiguous grid?

• We have used a dense D = {0, 1, · · · , 29}.
• What if

• D(Grid 1) = {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}
• D(Grid 2) = {0, 1, 4, 8, 12, 18, 24, 29}

• An accurate short-run solution, even for a sparse

grid.

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

Capital: k̂(t)

k(t)

k̂(t): Contiguous

k̂(t): D(Grid 1)

k̂(t): D(Grid 2)

0 10 20 30 40 50
Time(t)

−0.004

−0.002

0.000

0.002

0.004

0.006

Relative error: εk(t)

εk(t): Contiguous

εk(t): D(Grid 1)

εk(t): D(Grid 2)

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

Capital: k̂(t)

k(t)

k̂(t): Contiguous

k̂(t): D(Grid 2)

0 10 20 30 40 50
Time(t)

−0.005

0.000

0.005

0.010

0.015

0.020

Relative errors: εk(t)

εp(t): Contiguous

εp(t): D(Grid 2)

1.95

2.00

1.95

2.00

24

Neoclassical growth model: multiple steady-states and hysteresis

• When there are multiple steady states with saddle-path stability, each with its domain of attraction:

• Can the inductive bias detect there are multiple basins of attraction?

• How does the inductive bias move us toward the correct steady state for a given initial condition?

• Consider a non-concave production function:

f (k) ≡ amax{kα, b1kα − b2}

• Two steady-states k∗
1 and k∗

2 .

• The same numerical procedure.

Capital (k)

Pr
od

uc
tio

n

f(k) = a max{k , b1k b2}
Production function

25

Neoclassical growth model with non-concave production function: results

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Capital: kθ(t)

k∗1
k∗2

0 10 20 30 40 50
Time(t)

0.3

0.4

0.5

0.6

0.7

0.8

Consumption: cθ(t)

c∗1
c∗2

• Different initial conditions in k0 ∈ [0.5, 1.75] ∪ [2.75, 4].

• In the vicinity of k∗
1 and k∗

2 the paths converge to the right steady-states.

26

Deep learning is not the only

option

Deep learning is not the only option: kernels

• Deep learning might be too “spooky”.

• We can use kernels methods, K (·, ·), instead of

neural networks and control the RKHS norms.

• Focusing on continuous time equivalent of these

problems.

• The same results, theoretical guarantees, very

fast and robust.

• With J Perla, R Childers, and G Pleiss.

27

Optimal control framework

Consider the following problem arising in optimal control:

ẋ = F (x(t), y(t))

µ̇ = rµ(t)− µ(t)⊙ G (x(t),µ(t), y(t))

0 = H (x(t),µ(t), y(t))

x(0) = x0

• State variables x(t) ∈ RM , initial condition x0; co-state variables µ(t) ∈ RM ; jump variables

y(t) ∈ RP

• This problem is ill-posed and can have infinitely many solutions.

28

Transversality condition: an asymptotic boundary condition

lim
t→∞

e−rtx(t)⊙ µ(t) = 0

• The transversality condition is an asymptotic boundary condition.

• We typically assume a finite time horizon T and shoot for the finite steady state x∗, µ∗, and y∗.

• This approach is straightforward in low dimensions but becomes significantly more challenging in

high-dimensional settings.

29

Optimal control framework: an example, Ramsey–Cass–Koopmans model

• Classic Ramsey–Cass–Koopmans

k̇(t) = f (k(t))− c(t)− δk(t)

µ̇(t) = rµ(t)− µ(t) [f ′(k(t))− δ]

0 = c(t)µ(t)− 1

k(0) = k0

0 = lim
t→∞

e−rtk(t)µ(t)

• f (·) is the production function, r discount rate, and δ is the depreciation.

30

What does the violation of the transversality condition look like?

• All paths solve the ordinarily differential

equations ans the algebraic equation.

• The solutions that violate the transversality

condition limt→∞ µ̇ = ∞ and limt→∞ µ = ∞
• Diverges faster than ert .

x

R1

R2
R3

R4

R5 R6

x = 0
= 0

Stable Manifold: * (x)

31

Kernel approximation

Approximating the derivatives with a kernel:

x̂(t) = x0 +

∫ t

0

ˆ̇x(τ)dτ, µ̂(t) = µ̂0 +

∫ t

0

ˆ̇µ(τ)dτ, ŷ(t) = ŷ 0 +

∫ t

0

ˆ̇y(τ)dτ,

ˆ̇x(t) =
N∑
j=1

αx
j K (t, tj), ˆ̇µ(t) =

N∑
j=1

αµj K (t, tj), ˆ̇y(t) =
N∑
j=1

αy
j K (t, tj)

• x0 is given.

• µ̂0, ŷ 0, α
x , αµ, and αy are learnable parameters.

• K (·, ·) is the kernel.

32

Approximate solution: Algorithm

min
x̂(t)∈HM ,µ̂(t)∈HM ,

ŷ(t)∈HP

(
M∑

m=1

∥ˆ̇x (m)∥2H +
M∑

m=1

∥ ˆ̇µ(m)∥2H

)

s.t. ˆ̇x = F (x̂(t), ŷ(t))
ˆ̇µ = r µ̂(t)− µ̂(t)⊙ G (x̂(t), µ̂(t), ŷ(t))

0 = H (x̂(t), µ̂(t), ŷ(t))

• The objective function penalizes explosive paths.

• Constraints solve the ”first order conditions”.

33

Application: Growth with human and physical capital, a mid-size problem

k̇(t) = ik(t)− δkk(t), ḣ(t) = ih(t)− δhh(t),

µ̇k(t) = rµk(t)− µk(t) [fk (k(t), h(t))− δk] , µ̇h(t) = rµh(t)− µh(t) [fh (k(t), h(t))− δh]

0 = µk(t)c(t)− 1, 0 = µk(t)− µh(t)

0 = f (k(t), h(t))− c(t)− ik(t)− ih(t),

for given initial conditions k(0) = k0, h(0) = h0, and two transversality conditions

0 = lim
t→∞

e−rtk(t)µk(t), 0 = lim
t→∞

e−rth(t)µh(t).

• x(t) = [k(t), h(t)]T , µ(t) = [µk(t), µh(t)]
T , y(t) = [ik(t), ih(t), c(t)]

T

34

Results

• Accurate short- and medium-run solution.

• The solution “learns” the steady state.

0 20 40 60 80 100
Time

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Ph
ys

ic
al

 C
ap

ita
l:

x k
(t)

xk(t): Kernel Approximation
Extrapolation/Interpolation

0 20 40 60 80 100
Time

1.50

1.75

2.00

2.25

2.50

2.75

3.00

H
um

an
 C

ap
ita

l:
x h

(t)

xh(t): Kernel Approximation
Extrapolation/Interpolation

0 20 40 60 80 100
Time

0.8

0.9

1.0

1.1

1.2

1.3

1.4

C
on

su
m

pt
io

n:
 y

c(t
)

yc(t): Kernel Approximation
Extrapolation/Interpolation

0 20 40 60 80 100
Time

0.265

0.270

0.275

0.280

0.285

0.290

0.295

0.300

Ph
ys

ic
al

 C
ap

ita
l I

nv
es

tm
en

t:
 y

k(t
)

yk(t): Kernel Approximation
Extrapolation/Interpolation

0 20 40 60 80 100
Time

0.150

0.155

0.160

0.165

0.170

0.175

0.180

0.185

H
um

an
 C

ap
ita

l I
nv

es
tm

en
t:

 y
h(

t)

yh(t): Kernel Approximation
Extrapolation/Interpolation

0 20 40 60 80 100
Time

0.7

0.8

0.9

1.0

1.1

1.2

C
o-

st
at

e
Va

ri
ab

le
:

k(t
) k(t): Kernel Approximation

Extrapolation/Interpolation

0 20 40 60 80 100
Time

0.7

0.8

0.9

1.0

1.1

1.2

C
o-

st
at

e
Va

ri
ab

le
:

h(
t) h(t): Kernel Approximation

Extrapolation/Interpolation

35

Back to deep learning: Recursive

neoclassical growth model and

the transversality condition

Recursive formulation (with a possible BGP)

Skipping the Bellman formulation and going to the first order conditions in the state space , i.e., (k, z)

u′(c(k , z)) = βu′(c(k ′(k , z), z ′))
[
z ′1−αf ′(k ′(k, z)) + 1− δ

]
k ′(k , z) = z1−αf (k) + (1− δ)k − c(k, z)

z ′ = (1 + g)z

k ′ ≥ 0

0 = lim
T→∞

βTu′(cT)kT+1 ∀(k0, z0) ∈ X

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1).

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP z .

36

Interpolation problem: the optimization problem

• A set of points D = {k1, . . . , kNk
} × {z1, . . . , zNz}.

• A family of over-parameterized functions k ′(·, ·; θ) ∈ H(Θ).

• Use the feasibility condition and define c(k , z ; k ′) ≡ z1−αf (k) + (1− δ)k − k ′(k , z).

In practice we minimize the Euler residuals:

min
θ∈Θ

1

|D|
∑

(k,z)∈D


u′
(
c
(
k , z ; k ′(.; θ)

))
u′
(
c
(
k ′(k , z ; θ), (1 + g)z ; k ′(.; θ)

)) − β
[
((1 + g)z)1−α f ′ (k ′(k, z ; θ)) + 1− δ

]
︸ ︷︷ ︸

Euler residual



2

37

Interpolation problem: without the transversality condition

• This minimization does not contain the transversality condition.

• Without the transversality condition it has more than one minima.

• No explicit norm regularization.

• Does the implicit bias weed out the solutions that violate the transversality condition? Let’s analyze

this more rigorously.

38

Is the transversality condition necessary? Case of g = 0, z = 1

2 4 6 8 10
Capital(k)

2

4

6

8

10 k̃′(k): Violating TVC

k′(k)

45 degree line

• The solutions that violate the transversality condition are above the one that do not.

• They have bigger derivatives. Therefore, they have bigger norms:

0 ≤ ∥k ′∥S < ∥k̃ ′∥S . (1)

39

Results: one initial condition

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

Capital: k̂(t)

k̂(t): median

k(t)

Conv(D)

0 10 20 30 40 50
Time(t)

0.00

0.01

0.02

0.03

0.04

0.05

Relative error: εk(t)

εk(t): Extrapolation, median

εk(t): Interpolation, median

0 10 20 30 40 50
Time(t)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Consumption: ĉ(t)

ĉ(t): median

c(t)

0 10 20 30 40 50
Time(t)

−0.06

−0.04

−0.02

0.00

0.02

Relative error: εc(t)

εc(t): Extrapolation, median

εc(t): Interpolation, median

1.70

1.75

0.96

0.98

1.00

• Picking D = [0.8, 2.5]× {1} and k0 = 0.4 ̸∈ D
is “extrapolation” α = 1

3 , σ = 1, β = 0.9, and

g = 0. .

• Low generalization errors, even without

imposing transversality condition.

• Results for 100 different seeds (initialization of

the parameters)

For all k ∈ D

40

Far from the steady state

0 5 10 15
Time(t)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Capital: k̂(t)

k̂(t)

k(t)

Xtrain

0 5 10 15
Time(t)

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Relative error: εk(t)

Extrapolation

Interpolation

0 5 10 15
Time(t)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Consumption: ĉ(t)

ĉ(t)

c(t)

0 5 10 15
Time(t)

−0.02

−0.01

0.00

0.01

Relative error: εc(t)

Extrapolation

Interpolation

1.45

1.50

0.88

0.90

0.92

• Picking D = [0.8, 1.5] , k∗ /∈ [0.8, 1.5].

• A local grid around the k0 is enough.

• Accurate solutions in the interpolation region.

• Generalization errors are not bad.

• Results for 100 different seeds (initialization of

the parameters)

41

Growing TFP

0 10 20 30 40 50
Time(t)

1

2

3

4

Capital: k̂(t)

k̂(t)

k(t)

0 10 20 30 40 50
Time(t)

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02
Relative error: εk(t)

Extrapolation

Interpolation

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

Consumption: ĉ(t)

ĉ(t)

c(t)

0 10 20 30 40 50
Time(t)

−0.020

−0.015

−0.010

−0.005

0.000

0.005

Relative error: εc(t)

Extrapolation

Interpolation

1.35

1.40

0.90

0.95

• Picking D = [0.8, 3.5]× [0.8, 1.8] but now

g = 0.02.

• Choosing k ′(k, z ; θ) = zNN(kz , z ; θ).

• Here we used economic intuition to design the

H(Θ).

• Relative errors are very small inside the grid.

• Small generalization errors.

42

Are Euler and Bellman residuals

enough?

Euler residuals are not enough

• We picked a grid D and approximated k ′(k) with an over-parameterized function.

• The approximate solutions do not violate the transversality condition.

• What happens if we approximate the consumption functions c(k) with an over-parameterized

function.

• We get an interpolating solution, i.e, very small Euler residuals.

• However, the solutions violate the transversality condition.

Intuition: consumption functions with low derivatives leads to optimal policies for capital with big

derivatives.

43

Small Euler residuals can be misleading

1.0 1.5 2.0 2.5
capital(k)

10−10

10−9

10−8

10−7

10−6

Euler residuals squared: approximating k′(k)

Euler residuals squared: median

1.0 1.5 2.0 2.5
capital(k)

10−10

10−9

10−8

10−7

10−6

Euler residuals squared: approximating c(k)

Euler residuals squared: median

1.0 1.5 2.0 2.5
capital(k)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k′(k): appriximating k′(k)

k′(k): median

45 degree line

1.0 1.5 2.0 2.5
capital(k)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k′(k): approximating c(k)

k′(k): median

45 degree line

• Left panels: approximating k ′(k) with a deep

neural network.

• The solutions do not violate the TVC.

• k ′(k) intersects with 45◦ line at k∗ ≈ 2.

• Right panels: approximating c(k) with a deep

neural network.

• The solutions violate the TVC.

• k ′(k) intersects with 45◦ line at k̃max ≈ 30.

• Euler residuals are systematically lower.

44

Can regularization fix this problem?

1.0 1.5 2.0 2.5
capital(k)

10−12

10−11

10−10

10−9

10−8

10−7

Euler residuals2: NN = c(k), without regularization

1.0 1.5 2.0 2.5
capital(k)

10−12

10−11

10−10

10−9

10−8

10−7

Euler residuals2: NN = c(k), with regularization

1.0 1.5 2.0 2.5
capital(k)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k′(k) : NN = c(k), without regularization

k′(k)

45 degree line

1.0 1.5 2.0 2.5
capital(k)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k′(k) : NN = c(k), with regularization

k′(k)

45 degree line

• Left panels: approximating c(k) with a deep

neural network without explicit regularization.

• What does happen with L2 regularization?

• Penalizing
∑

θi∈Θ θ2i .

• Right panels: approximating c(k) with a deep

neural network with explicit regularization.

• Using deep learning requires understanding the

inductive bias and economic theory.

45

Conclusion

• Short- and medium-run accurate solutions can be obtained without strictly enforcing the long-run

boundary conditions on the model’s dynamics.

• Long-run (global) conditions can be replaced with appropriate regularization (local) to achieve

optimal solutions, hence the title of the paper.

• Inductive bias provides a foundation for modeling forward-looking behavioral agents with

self-consistent expectations.

46

Discussion: where to go from here?

• Can inductive bias/regularization be thought of as an equilibrium selection device?

• In this paper it is used to select solutions.

• This method (mostly the kernel method) can be used for sampling high-dimensional state spaces

when there is stochasticity.

• Solve the deterministic in short-run and use the points as sample of the state-space.

• Then solve the stochastic problem.

47

Appendix

Deep Learning: random initialization and non-convex optimization

0 1 2 3 4 5 6
X

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y

Before training: Initialization with Uniform Distribution

Training Data
Median
10th-90th Quantiles

0 1 2 3 4 5 6
X

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y

After training: Initialization with Uniform Distribution

Training Data
Median
10th-90th Quantiles

1.7

1.8

Back

48

Results: initial conditions over the state space

0 10 20 30 40 50
Time(t)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Capital: k̂(t)

k̂(t)

k(t)

Xtrain

0 10 20 30 40 50
Time(t)

0.6

0.8

1.0

1.2

1.4

1.6

Consumption: ĉ(t)

ĉ(t)

c(t)

2.45

2.50

2.55
1.200

1.225

• The solution has to satisfy the transversality condition for all points in X
limT→∞ βTu′(c(T))k(T + 1) = 0 ∀ k0 ∈ X

• Three different initial condition for capital, all outside of X .

back 49

	Motivation, Question, and Contribution
	Background: Economic Models, Deep learning and inductive bias
	Outline
	Linear asset pricing and the no-bubble condition
	Sequential neoclassical growth model and the transversality condition
	Deep learning is not the only option
	Back to deep learning: Recursive neoclassical growth model and the transversality condition
	Are Euler and Bellman residuals enough?
	Appendix

