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Background: Deep learning for

functional equations



Equilibrium conditions as functional equations

Most theoretical models in economics with equilibrium conditions can be written as functional equations:

• Take some function(s) ψ ∈ Ψ where ψ : X → Y (e.g. asset price, investment choice, best-response).

• Domain X could be state (e.g. dividends, capital, opponents state) or time if sequential.

• The “model” is ℓ : Ψ ×X → R (e.g., Euler and Bellman residuals, equilibrium FOCs).

• The solution is the root of the model (residuals operator), i.e., 0 ∈ R, at each x ∈ X .

Then a solution is a ψ∗ ∈ Ψ where ℓ(ψ∗, x) = 0 for all x ∈ X . How do we find an approximate solution?
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Example: recursive formulation of the neoclassical growth

An example of a recursive case:

• Domain: x =
[
k
]
and X = R+.

• Solve for the optimal policy k ′(·) and consumption function c(·): So ψ : R → R2 and Y = R2
+.

• Residuals are the Euler equation and feasibility condition, so R = R2:

ℓ(
[
k ′(·) c(·)

]
︸ ︷︷ ︸

≡ψ

, k︸︷︷︸
≡x

) =

[
u′(c(k))− βu′(c(k ′(k))) (f ′(k ′(k)) + 1− δ)

f (k)− c(k)− k ′(k) + (1− δ)k

]
︸ ︷︷ ︸

model

• Finally, ψ∗ = [k ′(·), c(·)] is a solution if it has zero residuals on domain X .
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Classical solution method for functional equations

Quick review of collocation-like methods:

1. Pick finite set of D points X̂ ⊂ X (e.g., a grid).

2. Choose approximation ψ̂(·; θ) ∈ H(Θ) with coefficients Θ ⊆ RM (e.g., Chebyshev polynomials).

3. Fit with nonlinear least-squares

min
θ∈Θ

∑
x∈X̂

ℓ(ψ̂(·; θ), x)2

If θ ∈ Θ is such that ℓ(ψ̂(·; θ), x) = 0 for all x ∈ X̂ we say ψ̂(·; θ) interpolates X̂ .

4. The goal is to have good generalization:

• The approximate function is close to the solution outside of X̂ .

• In high dimensions this becomes very important.
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A deep learning approach: I

Recall we need a parametric function ψ̂(·; θ) ∈ H(Θ):

• Deep neural networks are highly-overparameterized functions designed for good generalization.

• Number of coefficients much larger than the grid points (M ≫ N).

• Example: one layer neural network, ψ̂ : RQ → R:

ψ̂(x ; θ) = W2 · σ (W1 · x + b1) + b2

• W1 ∈ RP×Q , b1 ∈ RP×1, W2 ∈ R1×P , and b2 ∈ R.

• σ(·) is a nonlinear function applied element-wise (e.g., max{·, 0}, Sigmoid, Tanh,...).
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A deep learning approach: II

• Θ ≡ {b1,W1, b2,W2} are the coefficients, in this example M = PQ + P + P + 1.

• Making it “deeper” by adding another “layer”:

ψ̂(x ; θ) ≡ W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3.

• Think of deep neural networks as parametric functions.

• Architecture of the neural networks can be flexibly informed by the economic insight and theory.

• The Symmetry paper heavily relies on this.
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Concerns regarding over-parameterization

“I remember my friend Johnny von Neumann used to say, with four parameters I can fit an

elephant, and with five I can make him wiggle his trunk.”

Enrico Fermi

“The best way to solve the problem from practical standpoint is you build a very big system ...

basically you want to make sure you hit the zero training error.”

Ruslan Salakhutdinov, SI 2017

• If the number of parameters is much larger than the grid points (i.e. M ≫ N), there might be many

interpolating solutions.

• So which solution(s) are we going to find? .

• I will come back to this in the Spooky paper.
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Exploiting Symmetry in

High-Dimensional Dynamic

Programming



Motivation

• Most dynamic models in macro (and other fields) deal with either:

• Representative agent or few agents.

• A continuum of agents.

• However, many models of interest in macro (IO and trade) deal with finite (but large) number of

agents and idiosyncratic/aggregate uncertainty:

• Industry dynamics with many firms, agents and industries, even models with networks.

• Heterogeneous agent labor models (e.g., overlapping generations, different types).

• These models are becoming increasingly popular, but:

• They pose computational challenges as we add more agents.

• No (non-heuristic) algorithm exists providing global solutions in the presence of aggregate uncertainty.
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Challenges: the curse of dimensionality in equilibrium models

Three components to the curse of dimensionality with many agents (Bellman, 1958, p. IX)

1. The cardinality of the state space is enormous.

• With 266 state variables, with 2 values per state (zero and one), we have more arrangements (2266) than

the estimated number of protons in the universe.

2. With idiosyncratic and aggregate shocks we need to calculate high-dimensional conditional

expectations.

3. Finding equilibrium paths to the steady-state (ergodic distributions) are extremely hard in

high-dimensions.

9



Contribution

Inspired by economic theory, providing novel method for globally solving high-dimensional heterogeneous

agent models with aggregate shocks which relies on:

1. A symmetry present in many heterogeneous agent models, i.e., exchangeability of agents.

• Example: In general equilibrium models the Walrasian auctioneer removes indices.

2. Concentration of measures, something that resembles the law of large numbers to deal with

conditional expectations (very fast).

• More agents makes it easier to forecast the evolution of distributions.

3. Show how to implement the symmetry when using deep neural networks.

With these we globally solve a model with 10,000 (and even more) agents which was not possible before.
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Literature Review

• Deep learning as a functional approximation: Maliar et al. (2019), Fernández-Villaverde et al.

(2022), Duarte (2018), Azinovic et al. (2022), Han et al. (2021) (a mean-field approach).

• Symmetry in statistics and machine learning: Bloem-Reddy and Teh (2020), Zaheer et al. (2017),

and Yarotsky (2018).

• Symmetry in computer science (MDP/RL): Ravindran and Barto (2001) and Narayanamurthy and

Ravindran (2008), van der Pol et al. (2020).

• Symmetry in micro and games: Jovanovic and Rosenthal (1988), Hartford et al. (2016)
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Application



How do we pick our application to show how all this works?

• In terms of application, there are two routes:

1. Introducing a sophisticated application where the method “shines”.

2. Or, applying it to a well-known example.

• If I tell you about a sophisticated application, how do we know our “solution” method works?

• So we study a well-known example (with a twist).

• Study the more sophisticated applications in future projects.
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Our application

A variation of the Lucas and Prescott (1971) model of investment under uncertainty with N firms.

Why?

1. Ljungqvist and Sargent (2018), pp. 226-228, use it to introduce recursive competitive equilibria.

2. Simple model that fits in one slide.

3. Under one parameterization, the model has a known Linear-Quadratic (LQ) solution, which gives us

an exact benchmark.

4. By changing one parameter, the model is nonlinear, with no known solution. Our method handles the

nonlinear case as easily as the LQ case with high accuracy.
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Investment under uncertainty

• Industry consisting of N > 1 firms, each producing the same good.

• Firm of interest produces output x (x units of capital).

• Thus, the vector X ≡ [X1, . . .XN ]
⊤ is the production (or capital) of the whole industry.

• The inverse demand function for the industry is, for some ν ≥ 1 (this is our twist):

p(X ) = 1− 1

N

N∑
i=1

X ν
i

• The firm does not consider the impact of its individual decisions on p(X ).

• Adjustment cost: investing u has a cost γ
2 u

2.

• Law of motion for capital x ′ = (1− δ)x + u + σw + ηω where w ∼ N (0, 1) an i.i.d. idiosyncratic

shock, and ω ∼ N (0, 1) an i.i.d. aggregate shock, common to all firms.

• The firm chooses u to maximize E
[∑∞

t=0 β
t
(
p(X )x − γ

2 u
2
)]
. 14



Recursive problem

The recursive problem of the firm taking the exogenous policy û(·,X ) for all other firms as given is:

v(x ,X ) = max
u

{
p(X )x − γ

2
u2 + βE [v(x ′,X ′)]

}
s.t. x ′ = (1− δ)x + u + σw + ηω

X ′
i = (1− δ)Xi + û(Xi ,X ) + σWi + ηω, for i ∈ {1, ...,N}

First order conditions + symmetric equilibrium

γu(x ,X ) = βE [p(X ′) + γ(1− δ)u(x ′,X ′)]

Goal: Using economic theory to

Design H(Θ) class for approximating u(x ,X )?
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General class of problems: A “big X , little x” dynamic programming

v(x ,X ) = max
u

{
r
(
x , u,X

)
+ βE [v(x ′,X ′)]

}
s.t. x ′ = g(x , u) + σw + ηω

X ′ = G (X ) + ΩW + ηω1N

1. x is the individual state of the agent.

2. X is a vector stacking the individual states of all of the N agents in the economy.

3. u is the control variable.

4. w is random innovation to the individual state, stacked in W ∼ N (0N , IN) and where, w.l.o.g.,

w = W1.

5. ω ∼ N (0, 1) is a random aggregate innovation to all the individual states. 16



Permutation Groups

• A permutation matrix is a square matrix with a single 1 in each row and column and zeros

everywhere else.

• Let SN be the set of all n! permutation matrices of size N × N. For example:

S2 =

{[
1 0

0 1

]
,

[
0 1

1 0

]}

• Multiplying vector v ∈ RN by π ∈ SN reorders elements of v

• (If you know about this): SN is the symmetric group under matrix multiplication.
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Permutation-invariant dynamic programming

Definition

A ‘big X , little x ’ dynamic programming problem is a permutation-invariant dynamic programming

problem if, for all (x ,X ) ∈ RN+1 and all permutations π ∈ SN

1. The reward function r is permutation invariant:

r(x , u, πX ) = r(x , u,X )

2. The deterministic component of the law of motion for X is permutation equivariant:

G (πX ) = πG (X )

3. The covariance matrix of the idiosyncratic shocks satisfies

πΩ = Ωπ 18



Main results I: Permutation invariance of the optimal solution

Proposition

The optimal solution of a permutation-invariant dynamic programming problem is permutation invariant.

That is, for all π ∈ SN :

u(x , πX ) = u(x ,X )

and:

v(x , πX ) = v(x ,X )

Can u(x ,X ) permutation invariance guide H(Θ) choice?
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Curse of dimensionality in this example

Recall there are three separate sources of the “curse” here as we increase the number of agents:

1. Can we approximate u(x ,X ) for high dimensional X ∈ RN without massive increases in the X̂ grid?

2. Given intuition that individual Xi ∈ X have limited effect on u(x ,X ), how to calculate E [u(x ′,X ′)]?

• Look at EW [u(x ′,X ′)|w , ω] to condition on firm’s idiosyncratic w aggregate shock ω.

• Why conditioning on these two? They matter a lot. Now, can something similar to the law of large

numbers happen?

3. What about the stationary solutions and transversality condition?

• Euler equation have multiple solutions, some leading to non-stationary paths (I will come back to this).
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Representation of permutation-invariant functions

Proposition

(based on Wagstaff et al., 2019) Let f : RN+1 → R be a continuous permutation-invariant function

under SN , i.e., for all (x ,X ) ∈ RN+1 and all π ∈ SN :

f (x , πX ) = f (x ,X )

Then, there exist a latent dimension L ≤ N and continuous functions ρ : RL+1 → R and ϕ : R → RL

such that:

f (x ,X ) = ρ

(
x ,

1

N

N∑
i=1

ϕ(Xi )

)
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Representation of permutation-invariant functions: Discussion and intuition

u(x ,X ) = ρ

(
x ,

1

N

N∑
i=1

ϕ(Xi )

)

• This proposition should remind you of Krusell-Smith (1998), L = 1, ϕ(Xi ) = Xi .

• Key benefit for approximation is the representation (ρ, ϕ), not explicit dimensionality reduction.

• Fitting a ρ and ϕ rather than f directly leads to far better generalization on X . Why?:

• Imposing structure on H(Θ), functions that know a lot about the economic problem.

• In practice: L ≪ N generalizes very well.
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Representation of permutation-invariant functions: Discussion and intuition

• We have seen a variation of this in IO.

• Exit/Entry problems, Xi ∈ {0, 1}.

• Remember the example with 266 states, binary values (zeros and ones)

• f (x ,X ) : 2N+1 → R.

• If permutation invariant: I only care about the number of ones.

• The dimensionality goes from 2N+1 to N + 2.

f (x ,X ) = f̂ (x ,
1

N

N∑
i=1

Xi )

But in this paper Xis are continuous variables.
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Expected gradient bounded in N

We need to focus on specific functions to deal with high-dimensional expectations:

Definition (Expected gradient bounded in N)

Let f : RN → R be a bounded function in N and z ∼ N (0N , IN) be a normalized Gaussian random

vector. The function f has its expected gradient bounded in N if there exists a C such that:

E
[
∥∇f (z)∥2

]
≤ C

N
,

where C does not depend on N.

EW

[
∥∇u(x ′,X ′)∥2

]
≤ C

N

• W : the idiosyncratic shocks of the rest of the agents in the economy.

• The policy to be well-behaved (non-explosive gradients).

• Other agent’s influence vanishes as the economy grows. 24



Main result II: Concentration of measure

Proposition

Suppose z ∼ N (0N ,Σ), where the spectral radius of Σ, denoted by ρ(Σ), is independent of N, z1 a

draw from z , and f : RN → R is a function with expected gradient bounded in N. Then:

P
(∣∣f (z1)− E [f (z)]

∣∣ ≥ ϵ
)
≤ ρ(Σ)C

ϵ2
1

N

• As Ledoux (2001) puts it: “A random variable that depends in a Lipschitz way on many independent

variables (but not too much on any of them) is essentially constant.”

• With concentration of measure, dimensionality is not a curse; it is a blessing.

Implication: We can calculate EW [u(x ′,X ′)|w , ω] with a single draw of idiosyncratic shocks W :

• EW [u(x ′,X ′)|w , ω] ≈ u(x ′,X ′)|w , ω.

• Reducing an N + 1-dimensional conditional expectation to a 2-D one (with good approximation).
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Summarizing the results

• The structure symmetry imposes on the functions leads to better generalization

• Functions extrapolate better outside of the grid points X̂ .

• Concentration of measures provides a fast method for calculating the conditional expectations.

• Calculate with one draw of the idiosyncratic shocks (conditional on the aggregate shock).

• No non-heuristic algorithm exists to solve this problem.
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Solving the Model



Design of H(Θ): Deep learning architectures

u(x ,X ) = ρ

(
x ,

1

N

N∑
i=1

ϕ(Xi )

)

Three cases for ϕ:

1. Identity function: One moment → ϕ(Identity).

2. Up to degree four polynomials: 4 moments → ϕ(Moments).

3. A deep neural network for ϕ, with L = 4 → ϕ(ReLU).

If polynomials for ϕ: A finite set of moments à la Krusell-Smith.

• In all cases, ρ is a highly over-parameterized neural network with four layers.

• The baseline ϕ(Identity), ϕ(Moments), and ϕ(ReLU) have 49.4K , 50.3K , and 199.6K coefficients. 27



Solution method follows “interpolation” methods

1. Pick: X̂ as simulated trajectories from X0:

• Only need 100 to 1000 points regardless of dimensionality of the state space N.

• Using economic insight (i.e., symmetry) gives us good generalization.

2. Choose: Design the H(Θ) with ρ and ϕ as discussed:

• ϕ(Identity), ϕ(Moments), and ϕ(ReLU).

Applying concentration of measures:

• One draw Ŵ = {Ŵ1, . . . , ŴN} of the idiosyncratic shocks. For a given u(·; θ), and aggregate shock

ω calculate:

X ′
i = (1− δ)Xi + u(X ) + σŴi + ηω, for i ∈ {1, ...,N}.

28



Solution method follows “interpolation” methods

• Approximate the Euler residuals

ε (X ; u(·; θ)) ≡ γu(X ; θ)− βE [P(X ′) + γ(1− δ)u(X ′; θ)]

using concentration of measures (one draw of W in X ′). error analysis in N

3. Fit: The residuals ε (X ; u(·; θ)), that is the “model” i.e., ℓ.

min
θ∈Θ

∑
X∈X̂

ε (X ; û(·; θ))2

4. How to Verify/Test: Given the approximate solution simulate new paths from X0 and check the

Euler residuals (ε).

Study two cases: linear (ν = 1) and nonlinear (ν > 1) demand functions
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Case 1: Linear to verify algorithms and methods

• With ν = 1, we have a linear demand function: p(X ) = 1− 1
N

∑N
i=1 Xi .

• It generates a Linear-Quadratic (LQ) dynamic programming problem (only the mean of Xi matters).

• We can find the exact u(x ,X ), LQ has algebraic solutions.

• The LQ solution gives us a benchmark against which we can compare our deep learning solution.

• The neural network figures learns the true solution, u(x ,X ) = H0 + H1
1
N

∑N
i=1 Xi , very quickly.
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Euler residuals: Linear case
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Figure 1: The absolute relative errors for ν = 1 and N = 128 for ϕ(Identity), ϕ(Moments), and ϕ(ReLU). The

dark blue curve shows the median errors along equilibrium paths for 100 seeds and 32 different trajectories.

ε ≡
∣∣ u(X )−û(X )

u(X )

∣∣
31



Equilibrium Paths: Linear case
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Figure 2: Comparison between baseline approximate solutions and the LQ solution for the case with ν = 1 and

N = 128.
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Computation time: Linear case
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Figure 3: Performance of the ϕ(ReLU) for different N (median value of 100 trials).
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Case 2: Nonlinear case with no “closed-form” solution

• With ν > 1, we have a nonlinear demand function: p(X ) = 1− 1
N

∑N
i=1 X

ν
i .

• Notice how, now, the whole distribution of Xi matters.

• But we can still find the solution to this nonlinear case using exactly the same functional

approximation and algorithm as before.

• We do not need change anything in the code except the value of ν.

• Since the LQ solution no longer holds, we do not have an exact solution to use as a benchmark, but

can check residuals.

• Same model and method. Computation time by N nearly the same to linear case
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Euler residuals: Nonlinear case
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Figure 4: The Euler residuals for ν = 1.5 and N = 128 for ϕ(Moments) and ϕ(ReLU). The dark blue curve shows

the average residuals along equilibrium paths for 100 seeds and 32 different trajectories.
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Equilibrium paths: Nonlinear case
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Time(t)
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Figure 5: The optimal policy u along the equilibrium paths for ν = [1.0, 1.05, 1.1, 1.5] and N = 128. Each path

shows the optimal policy for a single trajectory. 36



Some challenging question: Generalization puzzle

Question I: Generalization

• From statistical learning and numerical analysis we know:

• More coefficients in the family of parametric functions H(Θ) leads to over-fitting and poor

generalization (bias-variance trade-off).

• We have ≈ 200K parameters, and < 1K grid points.

• The results indicate the opposite: More coefficients → better generalization.

How come we achieve great generalization?
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Convergence results: Transversality condition and stationarity

Table 1: Simulating multiple seeds for different H(Θ) with ν = 1

Success
(%)

Early stopping failure
(%)

Violation of transversality
(%)

Overfitting
(%)

Group Description

Identity Baseline 48% 2% 50% 0%

Moments Baseline 59% 2% 37% 2%

Deep Sets Baseline 97% 0% 3% 0%
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Some challenging questions: Multiplicity and transversality puzzle

Question II: Multiplicity and transversality

γu(X ) = βE [p(X ′) + γ(1− δ)u(X ′)]

X ′
i = (1− δ)Xi + u(X ) + σWi + ηω, for i ∈ {1, ...,N}

with linear prices. Guess and verify with u(X ) ≡ H0 +
1
NH1

∑N
i=1 Xi

• The Euler equation is quadratic → two solutions: (H−
0 ,H

−
1 ), (H+

0 ,H
+
1 ):

• H−
1 < 0 → stationary solution, H+

1 > 0 → non-stationary solution.

• We have no explicit device in our algorithm to weed out the second solution.

How come there is a strong bias towards the stationary solution

Understanding the implicit bias of deep neural networks answers both questions.
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Summarizing the contribution

• Method for solving high-dimensional dynamic programming problems and competitive equilibria

with idiosyncratic and aggregate shocks relying

• Symmetry.

• Concentration of measures: Dimensionality is a blessing not a curse.

• Using economic theory (i.e., exchangeability) and deep learning for function approximation with a

huge # of parameters (≫ grid points)

• Achieve great generalization: key to alleviate the curse of dimensionality.

• Implementation

• Can deal with 10000+ agents.

• Can deal with 10000+ dimensional expectations with one Monte-carlo draw.
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Spooky Boundaries at a

Distance: Exploring

Transversality and Stability with

Deep Learning



Motivation

• Dynamic models usually require economic conditions eliminating explosive solutions (e.g.,

transversality or no-bubble).

• These are variations of “boundary conditions” in ODEs and PDEs on forward-looking behavior.

• Deterministic, stochastic, sequential, recursive formulations all require conditions in some form.

• These forward-looking boundary conditions are the key limitation on increasing dimensionality:

• Otherwise, in sequential setups, we can easily solve high-dimensional initial value problems.

• In recursive models accurate solutions are required for arbitrary values of the state variables.

• Question: Can we avoid precisely calculating steady-state, BGP, and stationary distribution, which

are never reached, and still have accurate short/medium-run dynamics disciplined by these boundary

conditions?
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Contribution

• Show that deep learning solutions to many dynamic forward-looking models automatically fulfill the

long-run boundary conditions we need (transversality and no-bubble).

• We show how to design the approximation using economic insight.

• Solve classic models with known solutions (asset pricing and neoclassical growth) and show excellent

short/medium term dynamics –even when non-stationary or with steady state multiplicity.

• Suggests these methods may solve high-dimensional problems while avoiding the key computational

limitation.

• We have to understand low-dimensional problems first.

• Intuition: DL has an “implicit bias” toward smooth and simple functions. Explosive solutions are not

smooth.

So what is this implicit bias?
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Deep learning optimizes in a space of functions

Remember

min
θ∈Θ

∑
x∈X̂

ℓ(ψ̂(·; θ), x)2

• Deep learning: number of coefficients is much larger than the number of grid points.

• Since M ≫ D, it is possible for ψ̂ to interpolate and the objective value will be ≈ 0.

• Since M ≫ D there are many solutions (e.g., θ1 and θ2),

• Agree on the grid points: ψ̂(x ; θ1) ≈ ψ̂(x ; θ2) for x ∈ X̂ .

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
ψ̂∈H

∑
x∈X̂

ℓ(ψ̂, x)2

But which ψ̂? 43



Deep learning and interpolation

• For M large enough, optimizers tend to converge to unique “simple” ψ̂ (w.r.t to some norm ∥ · ∥S).
Unique both in X̂ and X . There is a bias toward a specific class of solutions.

• How to interpret: interpolating solutions for some functional norm ∥ · ∥S

min
ψ̂∈H

||ψ̂||S

s.t. ℓ(ψ̂, x) = 0, for x ∈ X̂

• Comp Sci literature refers to this as the inductive bias or implicit bias: optimization process is biased

toward particular ψ̂.

• Small values of ∥ · ∥S corresponds to flat solutions with small gradients (w.r.t. input).

• Characterizing ∥ · ∥S is an active research area in CS at the heart of deep learning theory.

Sobolev
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Flat and smooth interpolation: Illustration
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Deep learning and interpolation in practice

Reminder: in practice we solve

min
θ∈Θ

∑
x∈X̂

ℓ
(
ψ̂(·; θ), x

)2

• The smooth interpolation is imposed implicitly through the optimization process.

• No explicit norm minimization or penalization is required.

In this paper: we describe how (and when) the minψ̂∈H ||ψ̂||S solutions are also the ones which

automatically fulfill transversality and no-bubble conditions.

• They are disciplined by long-run boundary conditions. Therefore, we can obtain accurate

short/medium-run dynamics.
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Outline

To explore how we can have accurate short-run dynamics, we show deep learning solutions to

1. Classic linear-asset pricing model.

2. Sequential formulation of the neoclassical growth model.

3. Sequential neoclassical growth model with multiple steady states.

4. Recursive formulation of the neoclassical growth model.

5. Non-stationarity, such as balanced growth path.
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Linear asset pricing



Sequential formulation

• Dividends, y(t), y0 as given, and follows the process:

y(t + 1) = c + (1 + g)y(t)

• Writing as a linear state-space model with x(t + 1) = Ax(t) and y(t) = Gx(t) and

x(t) ≡
[
1 y(t)

]⊤
,A ≡

[
1 0

c 1 + g

]
,G ≡

[
0 1

]
• “Fundamental” price given x(t) is PDV with β ∈ (0, 1) and β(1 + g) < 1

pf (t) ≡
∞∑
j=0

βjy(t + j) = G (I − βA)−1x(t).
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Recursive formulation

With standard transformation, all solutions pf (t) fulfill the recursive equations

p(t) = Gx(t) + βp(t + 1) (1)

x(t + 1) = Ax(t) (2)

0 = lim
T→∞

βTp(T ) (3)

x0 given (4)

That is, a system of two difference equations with one boundary and one initial condition.

• The boundary condition (3) is an condition necessary for the problem to be well-posed and have a

unique solution.

• It ensures that p(t) = pf (t) by imposing long-run boundary condition.

• But without this assumption there can be “bubbles” with p(t) ̸= pf (t), only fulfilling (1) and (2).

• Intuition: system of {p(t), x(t)} difference equations requires total of two boundaries or initial values

to have a unique solution.

49



Solutions without no-bubble condition

Without the no-bubble condition:

• Solutions in this deterministic asset pricing model are of the form:

p(t) = pf (t) + ζ β−t . (5)

• For any ζ ≥ 0. The initial condition x(0) determines pf (t).

• There are infinitely many solutions.

• The no-bubble condition chooses ζ = 0.
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Interpolation problem: without no-bubble condition

• A set of points in time X̂ = {t1, . . . , tmax}.
• A family of over-parameterized functions p(·; θ) ∈ H(Θ).

• Generate x(t) using the law of motion and x(0), equation (2).

In practice we minimize the residuals of the recursive form for the price:

min
θ∈Θ

1

|X̂ |
∑
t∈X̂

[p(t; θ)− Gx(t)− βp(t + 1; θ)]2 (6)

• This minimization does not contain no-bubble condition. It has infinitely many minima.

• Does the implicit bias of over-parameterized interpolation weed out the bubbles? Yes.

• Intuition: bubble solutions are explosive, i.e., big functions with big derivatives.

Let’s analyze this more rigorously.
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Interpolation formulation: min-norm mental model

The min-norm interpretation (mental model) is:

min
p∈H

∥p∥S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ X̂
0 = lim

T→∞
βTp(T )

(7)

(8)

(9)

Where x(t) for t ∈ X̂ is defined by x(0) initial condition and recurrence x(t + 1) = Ax(t) in (2)

• The minimization of norm ∥p∥S is the “inductive bias” toward particular solutions for t ∈ [0,∞] \ X̂ .
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Is the no-bubble condition still necessary?

• To analyze, drop the no-bubble condition and examine the class of solutions.

• In this case, we know the interpolating solutions to (8) without imposing (9)

p(t) = pf (t) + ζβ−t (10)

• Applying the triangle inequality

∥pf ∥S ≤ ∥p∥S ≤ ∥pf ∥S + ζ ∥β−t∥S (11)

• Relative to classic methods the “deep learning” problem now has a new objective, minimizing ∥p∥S .

• The new objective of minimizing the norm, makes the no-bubble condition redundant.
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Min-norm norm formulation: redundancy of no-bubble condition

Given the no-bubble condition is automatically fulfilled, could solve the following given some H and

compare to pf (t)

min
p∈H

∥p∥S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ X̂

(12)

(13)

A reminder: in practice, given the X̂ , we directly implement this as p(·; θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|X̂ |
∑
t∈X̂

[p(t; θ)− Gx(t)− βp(t + 1; θ)]2 (14)

Since law of motion is deterministic, given x(0) we generate x(t) with x(t + 1) = Ax(t) for t ∈ X̂
• The X̂ does not need to be contiguous and |X̂ | may be relatively small.

• Most important: no steady state calculated, nor large T ∈ X̂ required. 54



Results
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1. Pick X̂ = {0, 1, 2, ..., 29} and t > 29 is “extrapolation” where c = 0.01, g = −0.1, and y0 = 0.8.

2. Choose p(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |Θ| = 49.9K coefficients.

3. Fit using L-BFGS and PyTorch in just a few seconds. Could use Adam/SGD/etc.

4. Low generalization errors, even without imposing no-bubble condition.

εp(t) ≡ p̂(t)−p(t)
p(t) . 55



Contiguous vs. sparse grid
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• Pick

X̂ (Grid 1) = {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}
and X̂ (Grid 2) = {0, 1, 4, 8, 12, 18, 24, 29}.

• Contrary to popular belief, can use less grid

points relative to alternatives.

• Hypothesis verified, the solutions agree on the

seen and unseen grid points.
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Neoclassical growth in sequence

space



Sequential formulation

max
{c(t),k(t+1)}∞

t=0

∞∑
t=0

βtu (c(t)) (15)

s.t. k(t + 1) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t) (16)

z(t + 1) = (1 + g)z(t) (17)

k(t) ≥ 0 (18)

0 = lim
T→∞

βTu′ (c(T )) k(T + 1) (19)

k0, z0 given (20)

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1).

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP zt .

• Skip standard steps. . . Euler equation: u′(c(t)) = βu′(c(t + 1))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
.
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Interpolation problem: without transversality condition

• A set of points in time X̂ = {t1, . . . , tmax}.
• A family of over-parameterized functions k(·; θ) ∈ H(Θ).

• Generate z(t) using the law of motion and z(0), equations (17).

• Use the feasibility condition and define c(t; k) ≡ z(t)1−αf
(
k(t)

)
+ (1− δ)k(t)− k(t + 1).

In practice we minimize the Euler and initial conditions residuals:

min
θ∈Θ

(
1

|X̂ |
∑
t∈X̂

λ1

[
u′
(
c(t; k(·, θ))

)
u′
(
c(t + 1; k(·; θ))

) − β
[
z(t + 1)1−αf ′(k(t + 1; θ)) + 1− δ

]
︸ ︷︷ ︸

Euler residuals

]2

+λ2

[
k(0; θ)− k0︸ ︷︷ ︸

Initial condition residuals

]2)

• λ1 and λ2 positive weights.
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Interpolation problem: without transversality condition

• This minimization does not contain the transversality condition.

• Without the transversality condition it has infinitely many minima.

• No explicit norm minimization.

• Does the implicit bias weed out the solutions that violate the transversality condition? Yes.

• Intuition: The solutions that violate the transversality condition are big functions with big

derivatives.

Let’s analyze this more rigorously.
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Interpolation formulation: min-norm mental model

min
k∈H

∥k∥S

s.t. u′(c(t; k)) = βu′(c(t + 1; k))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ X̂

k(0) = k0

0 = lim
T→∞

βTu′(c(T ; k))k(T + 1)

(21)

(22)

(23)

(24)

c(t; k) ≡ z(t)1−αf
(
k(t)

)
+ (1− δ)k(t)− k(t + 1) (25)

Where z(t) for t ∈ X̂ is defined by z(0) initial condition and recurrence z(t + 1) = (1 + g)z(t).
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Is the transversality condition still necessary? Case of g = 0, z = 1

Sketch of the proof:

• Let {k(t), c(t)} be the sequence of optimal solution.

• Let {k̃(t), c̃(t)} be a sequence of solution that satisfy all the equations except transversality

condition (24).

1. c̃(t) approaches zero.

2. k̃(t) approaches k̃max ≡ δ
1

α−1 , and k(t) approaches k∗ ≡
(
β−1+δ−1

α

) 1
α−1

.

3. Both k̃(t) and k(t) are monotone. k̃max ≫ k∗. Therefore,

0 ≤ ∥k∥S ≤ ∥k̃∥S .
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Is the transversality condition still necessary? Case of g = 0, z = 1

Example: the violation of the transversality condition.
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• The solution that violate the transversality are associated with “big” capital path.

• The new objective of minimizing the norm, makes the transversality condition redundant.
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Min-norm formulation: redundancy of transversality condition

Given the transversality condition is automatically fulfilled, one could solve

min
k∈H

∥k∥S

s.t. u′(c(t; k)) = βu′(c(t + 1; k))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ X̂

k(0) = k0

Reminder: in practice we solve

min
θ∈Θ

(
1

|X̂ |
∑
t∈X̂

λ1

[
u′
(
c(t; k(·, θ))

)
u′
(
c(t + 1; k(·; θ))

) − β
[
z(t + 1)1−αf ′(k(t + 1; θ)) + 1− δ

]]2

+λ2

[
k(0; θ)− k0︸ ︷︷ ︸

Initial condition residuals

]2)

• |X̂ | may be relatively small, no steady state calculated, nor large T ∈ X̂ required. 63



Results
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1. Pick X̂ = {0, 1, ..., 30} and t > 30 is “extrapolation” α = 1
3 , σ = 1, β = 0.9, g = 0.0, and k0 = 0.4

2. Choose k(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |Θ| = 49.9K coefficients.

3. Fit using L-BFGS in just a few seconds. Comparing with value function iteration solution.

4. Low generalization errors, even without imposing the transversality condition.

Relative errors defined as εc(t) ≡ ĉ(t)−c(t)
c(t) , εk(t) ≡ k̂(t)−k(t)

k(t) . 64



Growing TFP
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• Pick same X̂ but now g = 0.02.

• Choose k(t; θ) = eϕtNN(t; θNN) where

θ ≡ {ϕ, θNN} ∈ Θ is the coefficient vector

• Here we used economic intuition of problem to

design the H(Θ) to generalize better.

• Non-stationary but can figure out the BGP.

• Learns the growth rate: ϕ ≈ ln(1 + g)

• Economic insight leads to great extrapolation!
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The neoclassical growth model

with multiple steady states



Sequential formulation

max
{ct ,kt+1}∞

t=0

∞∑
t=0

βtu(ct)

s.t. kt+1 = f (kt) + (1− δ)kt − ct

kt ≥ 0

0 = lim
T→∞

βTu′(cT )kT+1

k0 given.

1. Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1).

2. “Butterfly production function”: f (k) = amax{kα, b1kα − b2}, α ∈ (0, 1):

• There is a kink in the production function at k∗ ≡
(

b2
b1−1

) 1
α .

• This problem has two steady states, k∗
1 and k∗

2 and their corresponding consumption levels c∗1 and c∗2 .
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Results
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1. Pick X̂ = {0, . . . , 30}, α = 1
3 , σ = 1, β = 0.9, g = 0.0, a = 0.5, b1 = 3, b2 = 2.5 and

k0 ∈ {0.5, 1.0, 3.0, 4.0}
2. Choose k(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |Θ| = 49.9K coefficients.

3. Fit using Adam optimizer.
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Results: different initial conditions
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• Different initial conditions in

k0 ∈ [0.5, 1.75] ∪ [2.75, 4].

• In the vicinity of k∗
1 and k∗

2 the paths converge

to the right steady-states.

• The implicit bias picks up the right path.

• Low generalization errors, even without

imposing the transversality condition.
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Conclusion

• Solving functional equations with deep learning is an extension of collocation/interpolation methods.

• With massive over-parameterization, optimizers tend to choose those interpolating functions which

are not explosive and with smaller gradients (i.e., inductive bias).

• Over-parameterized solutions automatically fulfill forward-looking boundary conditions:

• Shedding light on the convergence of deep learning based solutions in dynamic problems in

macroeconomics.

• If we solve models with deep-learning without (directly) imposing long-run boundary conditions,

• Short/medium-run errors are small, and long-run errors after “we are all dead” are even manageable.

• Long-run errors do not affect transition dynamics even in the presence of non-stationarity and

steady-state multiplicity.

• Gives hope for solving high-dimensional models still disciplined by forward-looking economic assumptions.
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Appendix



Definition (Bounded functions in N)

Let:

L(M) ≡ {y ∈ RN : |yi | ≤ M ∀i = 1, . . . ,N}

be an N-dimensional hypercube in RN . A function f : RN → R is bounded in N if for every M there

exists KM such that

sup
y∈L(M)

|f (y)| < KM ,

where KM is a constant that does not depend on N, but may depend on M.

• Example f (y) = 1
N

∑N
i=1 yi → supy∈L(M) |f (y)| < M.

• To avoid f (y) =
∑N

i=1 yi → supy∈L(M) |f (y)| < NM.

back
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Concentration of measure is the bless of dimensionality

In the linear case we know the closed form solution for u

ε̂ (X ; u)− 0 ∼ N
(
0,
σ2
ε

N

)
u(X̂ ′)− E [u(X ′) | ω] ∼ N

(
0,
σ2
u

N

)

• Conditional expectation becomes constant as N gets large.

• One single Monte-carlo draw of the idiosyncratic shocks is enough.

back
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Analytic euler error due to the concentration of measure
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Parameters

• γ = 90, β = 0.95, σ = 0.005, η = 0.001.
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Implicit bias: More details

Let ψ1 and ψ2 be two differentiable function from a compact space X in R to R such that∫
X

∣∣∣∣dψ1

dx

∣∣∣∣2 dx > ∫
X

∣∣∣∣dψ2

dx

∣∣∣∣2 dx
then

∥ψ1∥S > ∥ψ2∥S .

Recently shown the optimizers (first order e.g. SGD) regularize Sobolev semi-norms: Ma, Ying (2021).
Back
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