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Mathematical Models:

Motivation



Why mathematical models?

• Where is this?
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Why mathematical models?

• Half a trillion dollars’ worth of gold.
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Caution: The data on the x-axis is fictitious, but the y -axis data is accurate.
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Why mathematical models?

• Policy Question:

By how much does decreasing the security budget by 70 million dollars change the probability of a

breach?

• How are you going to answer this?

• These are called counterfactuals.
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Why mathematical models?

Scenarios similar to this:

• Predicting Economic Outcomes from Policy Changes:

• Scenario: You want to understand the impact of a new tax policy on national income.

• Problem: You cannot definitively assess how national income would have changed if the tax policy

hadn’t been implemented.

• Why is it a problem? You need to know relationships between tax rates, consumer behavior, production,

and other economic variables.

4



Why mathematical models?

Scenarios similar to this:

• Evaluating the Impact of a Minimum Wage Increase on Employment:

• Scenario: You want to determine how raising the minimum wage affects employment levels.

• Problem: It’s impossible to predict how different sectors or regions would be affected by the wage

increase.

• Why is it a problem? You need to know factors labor demand elasticity, substitution effects, or the

interaction between wages and other economic variables.
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Why Mathematical Models?

You cannot answer these questions without a (mathematical) model.

• Model the incentives of the thieves, or their “payoff”.

• Model the incentives of the security team, and their decision-making process.

• Model the deterrence effects of security spending.
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Why mathematical models?

Many of these problems are inherently dynamic. Consider the Fort Knox example:

• Technology improves over time.

• Fort Knox security planners anticipate that thieves will gain access to better technology in the future.

• Thieves, in turn, expect security measures (and spending) to increase in response.
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Why Mathematical Models?

Should we take our models seriously?

• When experiments are not feasible, modeling is your only option.

• Even when experiments are possible, causal inference alone doesn’t reveal the mechanisms behind

cause and effect.
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Economic Models



Economic Models

If we have to take our models seriously what happens when they dont accept a closed-form

solution?

• Using numerical methods.

• Using the numerical solutions to study the counterfactuals.
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Economic Models

Problems with numerical methods in economics

1. They fail in complex and high-dimensional problems.

2. The dynamic nature of the problem adds another layer of complexity.
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Economic Models and Recent Advances in Machine Learning
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Economic Models and Machine Learning

Problems with numerical methods in economics

1. They fail in complex and high-dimensional problems.

• Recent advances in AI, promises in solving complex and high-dimensional problem.

• Not going to talk about this today.

2. The dynamic nature of the problem adds another layer of complexity.

• Focus of the talk today.
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Dynamic Models You Have Seen before

θ̈ + ω2 sin(θ) = 0

or

θ̇ = ν

ν̇ = −ω2 sin(θ)
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Dynamic Models You Have Seen before

θ̈ + ω2 sin(θ) = 0

or

θ̇ = ν

ν̇ = −ω2 sin(θ)
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Dynamic Models You Have Seen before

A typical physicist to economists:

• “We solve problems like this every

day.”

• “What’s all the fuss about?”
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Dynamic Models in Economics

Dynamic models in Physics

x(t + 1) = f (x(t), y(t))

y(t + 1) = g (x(t), y(t))

x(0) = x0 is given

y(0) = y0 is given

Dynamic models in Economics

x(t + 1) = f (x(t), y(t))

y(t + 1) = g (x(t), y(t))

x(0) = x0 is given

lim
t→∞

h (x(t), y(t)) = 0

• limt→∞ h (x(t), y(t)) = 0 is a long-run boundary condition.
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Dynamic Models in Economics

Why are dynamic models in economics hard?

• There is only one initial condition y(0) that generates a path y(t) satisfying

lim
t→∞

h (x(t), y(t)) = 0

• Other y(0) values lead to explosive x(t) or y(t).

• Economic problems have a saddle-path nature.

• How can we find it?

• Search for it: try different values of y(0) and simulate forward to a large T , then see which one

satisfies

h (x(T ), y(T )) ≈ 0

In high dimensions, this becomes a complicated search problem.
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Question

Question:

Can we (economists and agents) ignore these long-run boundary conditions and still have accurate

short/medium-run dynamics disciplined by the long-run conditions?
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Answer

Answer:

Yes, modern machine learning methods can achieve this due to their Inductive bias.
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What is inductive Bias?

Economic Models, Deep learning

and inductive bias



Economic Models: functional equations

A dynamic model can be explained as

• Economic object of interest: y(t)

• e.g., asset price, investment choice, best-response, etc.

• The “Economics model” error: ℓ
(
t, x(·), y(·)

)
• e.g., equilibrium FOCs.

Example of ℓ
(
t, x , y

)

ℓ
(
t, x(·), y(·)

)
≡


x(t + 1)− f (x(t), y(t))

y(t + 1)− g (x(t), y(t))

x(0)− x0
limt→∞ h (x(t), y(t))− 0



Then a solution is y∗(t) where ℓ(t, x , y∗) = 0 for all t.
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Approximate solution: deep neural networks

1. Sample time D = {t1, · · · , tN}
2. Pick a family of parametric functions (e.g., deep neural networks) yθ(·) ∈ H(θ):

• θ: parameters for optimization (i.e., weights and biases).

3. To find an approximation for y(t) solve:

min
θ

1

N

∑
x∈D

∥ ℓ(t, x , yθ)︸ ︷︷ ︸
Econ model error

∥22

• Deep neural networks are highly over-parameterized: formally, |θ| ≫ N
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Deep Neural Networks

Deep learning is highly-overparameterized H(Θ) (M ≫ D) class of functions.

• Example: one layer neural network, yθ : R → R:

yθ(t) = W2 · σ (W1 · t + b1) + b2

• W1 ∈ RP×1, b1 ∈ RP×1, W2 ∈ R1×P , and b2 ∈ R.

• θ ≡ {b1,W1, b2,W2} are the coefficients, in this example M = P + P + P + 1.

• σ(·) is a nonlinear function applied element-wise (e.g., max{·, 0}).

• Making it “deeper” by adding another “layer”: yθ(t) ≡ W3 · σ(W2 · σ(W1 · t + b1) + b2) + b3.
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Over-parameterized interpolation

• Being over-parameterized (|θ| ≫ N), the optimization problem can have many solutions.

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
yθ∈H

1

N

∑
x∈D

∥ℓ(t, x , yθ)∥22

• But which yθ?

• Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm ψ

min
yθ∈H

||yθ||ψ

s.t. ℓ(t, x , fθ) = 0, for all t ∈ D

• That is what we mean by inductive bias (see Belkin, 2021 and Ma and Yang, 2021).

• Characterizing ψ (e.g., Sobolev norms or semi-norms?) is an active research area in ML. 23



Inductive Bias: Regression

Problems



Regression Problem

Consider the data

{xi , yi}Ni=1

using a neural network

fθ(x) = W2 · σ (W1 · x + b1) + b2

to solve

min
θ

1

N

N∑
i=1

[yi − fθ(x)]
2
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Over-parameterization and smooth interpolation

• Intuition: biased toward solutions which are flatter and have smaller derivatives

0 1 2 3 4 5
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data
# of Parameters= 31

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data
# of Parameters= 2.4 K

0 1 2 3 4 5 6
X

0.5

0.0

0.5

1.0

1.5

2.0

Y

Training Data
# of Parameters= 12 K

25



Different Parameters, Same Function
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Deep Learning: “Fit Without Fear”?

• “I remember my friend Johnny von

Neumann used to say, with four

parameters I can fit an elephant, and

with five I can make him wiggle his

trunk.” Enrico Fermi

• “The best way to solve the problem

from practical standpoint is you build

a very big system ... basically you

want to make sure you hit the zero

training error” Ruslan Salakhutdinov 0 1 2 3 4 5 6
x
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Deep Learning: random initialization and non-convex optimization
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Intuition of the idea

• Minimum-norm inductive bias:

• Over-parameterized models (e.g., large neural networks)

interpolate the train data.

• They are biased towards interpolating functions with

smaller norms.

• So they dont like explosive functions.

• Violation of economic boundary conditions:

• Sub-optimal solutions diverge (explode) over time.

• This is due to the saddle-path nature of econ problems.

• The long-run boundary conditions rule out the explosive

solutions.

Saddle path
Divergent paths
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Outline



Outline of the talk

To explore how we can ignore the long-run boundary conditions, we show deep learning solutions to

1. Classic linear-asset pricing model.

2. Sequential formulation of the neoclassical growth model.

3. Sequential formulation of the neoclassical growth model with non-concave production function.

4. Equivalent for a recursive formulation of the neoclassical growth model.
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Linear asset pricing and the

no-bubble condition



Linear asset pricing: setup

• The risk-neutral price, p(t), of a claim to a stream of dividends, y(t), is given by the recursive

equation:

p(t) = y(t) + βp(t + 1), for t = 0, 1, · · ·

• β < 1, and y(t) is exogenous, y(0) given.

• A two dimensional dynamical system with unknown initial condition p(0). This problem is ill-posed.

• A family of solutions

p(t) = pf (t)︸ ︷︷ ︸
fundamentals

+ ζ

(
1

β

)t

︸ ︷︷ ︸
explosive bubble

• pf (t) ≡
∑∞
τ=0 β

τy(t + τ). Each solution corresponds to a different ζ > 0.
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Linear asset pricing: the long-run boundary condition

• Long-run boundary condition that rule out the

explosive bubbles and chooses ζ = 0

lim
t→∞

βtp(t) = 0.

• Any norm that preserve monotonicity, like Lp
and Sobolev (semi-)norms

min
ζ≥0

∥p∥ψ = ∥pf ∥ψ

• Ignoring the no-bubble condition and using a

deep neural network provides an accurate

approximation for pf (t).
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Linear asset pricing: numerical method

• Sample for time: D = {t1, · · · , tN}.
• Generating the dividend process: y(t + 1) = c + (1 + g)y(t), given y(0).

• An over-parameterized neural network pθ(t), ignore the non-bubble condition and solve

min
θ

1

N

∑
t∈D

[pθ(t)− y(t)− βpθ(t + 1)]2

• This minimization should provide an accurate short- and medium-run approximation for price based

on the fundamentals pf (t).
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Linear asset pricing: results

• Two cases: g < 0 and g > 0.

• Relative errors: εp(t) ≡ pθ(t)−pf (t)
pf (t)

.

• for g > 0: pθ(t) = eϕtNNθ(t), ϕ is “learnable”.

• Results for 100 different seeds (initialization of

the parameters):

• important for non-convex optimizations.

• Very accurate short- and medium-run

approximation.

0 10 20 30 40 50
Time(t)

0.85

0.90

0.95

1.00

1.05

Prices: pθ(t)

pf (t)

pθ(t): median

0 10 20 30 40 50
Time(t)

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

Relative errors: εp(t)

εp(t): median

0 10 20 30 40 50
Time(t)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Price: pθ(t)

pf (t)

pθ(t): median

0 10 20 30 40 50
Time(t)

0.00

0.01

0.02

0.03

0.04

Relative error: εp(t)

εp(t): median

34



Learning the growth rate
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• ĝ = eϕ − 1.

• Slightly biased due to small sample size, i.e., D = {0, 1, · · · , 29}.
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Sequential neoclassical growth

model and the transversality

condition



Neoclassical growth model: setup

• Total factor productivity z(t) exogenously given, capital k(t) with given k(0), consumption c(t),

production function f (·), depreciation rate δ < 1, discount factor β :

k(t + 1) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t)︸ ︷︷ ︸
feasibility constraint

,

c(t + 1) = βc(t)
[
z(t + 1)1−αf ′

(
k(t + 1)

)
+ 1− δ

]︸ ︷︷ ︸
Euler equation

.

• A three dimensional dynamical system with unknown initial condition c(0). This problem is ill-posed.

• A family of solutions, each solution corresponds to a different c(0). Only one of them is the optimal

solution.
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Neoclassical growth model: the long-run boundary condition

• To rule out sub-optimal

solutions, transversality

condition

lim
t→∞

βt k(t + 1)

c(t)
= 0.

• Using a deep neural network

and ignoring the transversality

condition provides a an accurate

approximation for the optimal

capital path.
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Neoclassical growth model: numerical method

• Sample for time: D = {t1, · · · , tN}.
• TFP process: z(t + 1) = (1 + g)z(t), given z(0).

• A over-parameterized neural network kθ(t),

• Given kθ(t), define the consumption function c(t; kθ) = z(t)1−αf (kθ(t)) + (1− δ)kθ(t)− kθ(t + 1)

• Ignore the transversality condition and solve

min
θ∈Θ

[
1

N

∑
t∈D

c(t + 1; kθ)

c(t; kθ)
− β

[
z(t + 1)1−αf ′

(
kθ(t + 1)

)
+ (1− δ)

]
︸ ︷︷ ︸

Euler residuals


2

+

 kθ(0)− k0︸ ︷︷ ︸
Initial condition residual

2 ]

• This minimization should provide an accurate short- and medium-run approximation for the optimal

capital and consumption path.
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Neoclassical growth model, no TFP growth: results

• g = 0, z(0) = 1.

• εk(t) ≡ kθ(t)−k(t)
k(t) , and εc(t) ≡ c(t;kθ)−c(t)

c(t)

• Benchmark solution: value function iteration.

• Results for 100 different seeds.

• Very accurate short- and medium-run

approximation.
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Neoclassical growth model with TFP growth: results

• g > 0 and z(0) = 1.

• kθ(t) = eϕtNNθ(t), ϕ is ”learnable”.

• Results for 100 different seeds.

• Very accurate short- and medium-run

approximation.
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But, seriously “in the long run, we are all dead”

• So far, we have used long time-horizon

D = {0, 1, · · · , 29}.
• In other methods, choosing the time-horizon T

is a challenge:

• Too large → accumulation of errors, and

numerical instability. We don’t have that

problem.

• Too small → convergence to the steady state

too quickly.

• An accurate short-run solution, even for a

medium-sized T .
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Do we need a dense and contiguous grid?

• We have used a dense D = {0, 1, · · · , 29}.
• What if

• D(Grid 1) = {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}
• D(Grid 2) = {0, 1, 4, 8, 12, 18, 24, 29}

• An accurate short-run solution, even for a sparse

grid.
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Neoclassical growth model: multiple steady-states and hysteresis

• When there are multiple steady states with saddle-path stability, each with its domain of attraction:

• Can the inductive bias detect there are multiple basins of attraction?

• How does the inductive bias move us toward the correct steady state for a given initial condition?

• Consider a non-concave production function:

f (k) ≡ amax{kα, b1kα − b2}

• Two steady-states k∗
1 and k∗

2 .

• The same numerical procedure.

Capital (k)
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f(k) = a max{k , b1k b2}
Production function
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Neoclassical growth model with non-concave production function: results
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• Different initial conditions in k0 ∈ [0.5, 1.75] ∪ [2.75, 4].

• In the vicinity of k∗
1 and k∗

2 the paths converge to the right steady-states.
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Deep learning is not the only

option



Deep learning is not the only option: kernels

• Deep learning might be too “spooky”.

• We can use kernels methods, K (·, ·), instead of

neural networks and control the RKHS norms.

• Focusing on continuous time equivalent of these

problems.

• The same results, theoretical guarantees, very

fast and robust.

• With J Perla, R Childers, and G Pleiss.

45



Optimal control framework

Consider the following problem arising in optimal control:

ẋ = F (x(t), y(t))

µ̇ = rµ(t)− µ(t)⊙ G (x(t),µ(t), y(t))

0 = H (x(t),µ(t), y(t))

x(0) = x0

• State variables x(t) ∈ RM , initial condition x0; co-state variables µ(t) ∈ RM ; jump variables

y(t) ∈ RP

• This problem is ill-posed and can have infinitely many solutions.
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Transversality condition: an asymptotic boundary condition

lim
t→∞

e−rtx(t)⊙ µ(t) = 0

• The transversality condition is an asymptotic boundary condition.

• We typically assume a finite time horizon T and shoot for the finite steady state x∗, µ∗, and y∗.

• This approach is straightforward in low dimensions but becomes significantly more challenging in

high-dimensional settings.
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Optimal control framework: an example, Ramsey–Cass–Koopmans model

• Classic Ramsey–Cass–Koopmans

k̇(t) = f (k(t))− c(t)− δk(t)

µ̇(t) = rµ(t)− µ(t) [f ′(k(t))− δ]

0 = c(t)µ(t)− 1

k(0) = k0

0 = lim
t→∞

e−rtk(t)µ(t)

• f (·) is the production function, r discount rate, and δ is the depreciation.
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What does the violation of the transversality condition look like?

• All paths solve the ordinarily differential

equations ans the algebraic equation.

• The solutions that violate the transversality

condition limt→∞ µ̇ = ∞ and limt→∞ µ = ∞
• Diverges faster than ert .

x

R1

R2
R3

R4

R5 R6

x = 0
= 0

Stable Manifold: * (x)
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Kernel approximation

Approximating the derivatives with a kernel:

x̂(t) = x0 +

∫ t

0

ˆ̇x(τ)dτ, µ̂(t) = µ̂0 +

∫ t

0

ˆ̇µ(τ)dτ, ŷ(t) = ŷ 0 +

∫ t

0

ˆ̇y(τ)dτ,

ˆ̇x(t) =
N∑
j=1

αx
j K (t, tj), ˆ̇µ(t) =

N∑
j=1

αµj K (t, tj), ˆ̇y(t) =
N∑
j=1

αy
j K (t, tj)

• x0 is given.

• µ̂0, ŷ 0, α
x , αµ, and αy are learnable parameters.

• K (·, ·) is the kernel.
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Approximate solution: Algorithm

min
x̂(t)∈HM ,µ̂(t)∈HM ,

ŷ(t)∈HP

(
M∑

m=1

∥ˆ̇x (m)∥2H +
M∑

m=1

∥ ˆ̇µ(m)∥2H

)

s.t. ˆ̇x = F (x̂(t), ŷ(t))
ˆ̇µ = r µ̂(t)− µ̂(t)⊙ G (x̂(t), µ̂(t), ŷ(t))

0 = H (x̂(t), µ̂(t), ŷ(t))

• The objective function penalizes explosive paths.

• Constraints solve the ”first order conditions”.

51



Application: Growth with human and physical capital, a mid-size problem

k̇(t) = ik(t)− δkk(t), ḣ(t) = ih(t)− δhh(t),

µ̇k(t) = rµk(t)− µk(t) [fk (k(t), h(t))− δk ] , µ̇h(t) = rµh(t)− µh(t) [fh (k(t), h(t))− δh]

0 = µk(t)c(t)− 1, 0 = µk(t)− µh(t)

0 = f (k(t), h(t))− c(t)− ik(t)− ih(t),

for given initial conditions k(0) = k0, h(0) = h0, and two transversality conditions

0 = lim
t→∞

e−rtk(t)µk(t), 0 = lim
t→∞

e−rth(t)µh(t).

• x(t) = [k(t), h(t)]T , µ(t) = [µk(t), µh(t)]
T , y(t) = [ik(t), ih(t), c(t)]

T
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Results

• Accurate short- and medium-run solution.

• The solution “learns” the steady state.
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Back to deep learning: Recursive

neoclassical growth model and

the transversality condition



Recursive formulation (with a possible BGP)

Skipping the Bellman formulation and going to the first order conditions in the state space , i.e., (k, z)

u′(c(k , z)) = βu′(c(k ′(k , z), z ′))
[
z ′1−αf ′(k ′(k, z)) + 1− δ

]
k ′(k , z) = z1−αf (k) + (1− δ)k − c(k, z)

z ′ = (1 + g)z

k ′ ≥ 0

0 = lim
T→∞

βTu′(cT )kT+1 ∀(k0, z0) ∈ X

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1).

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP z .
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Interpolation problem: the optimization problem

• A set of points D = {k1, . . . , kNk
} × {z1, . . . , zNz}.

• A family of over-parameterized functions k ′(·, ·; θ) ∈ H(Θ).

• Use the feasibility condition and define c(k , z ; k ′) ≡ z1−αf (k) + (1− δ)k − k ′(k , z).

In practice we minimize the Euler residuals:

min
θ∈Θ

1

|D|
∑

(k,z)∈D


u′
(
c
(
k , z ; k ′(.; θ)

))
u′
(
c
(
k ′(k , z ; θ), (1 + g)z ; k ′(.; θ)

)) − β
[
((1 + g)z)1−α f ′ (k ′(k, z ; θ)) + 1− δ

]
︸ ︷︷ ︸

Euler residual



2
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Interpolation problem: without the transversality condition

• This minimization does not contain the transversality condition.

• Without the transversality condition it has more than one minima.

• No explicit norm regularization.

• Does the implicit bias weed out the solutions that violate the transversality condition? Let’s analyze

this more rigorously.
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Is the transversality condition necessary? Case of g = 0, z = 1

2 4 6 8 10
Capital(k)

2

4

6

8

10 k̃′(k): Violating TVC

k′(k)

45 degree line

• The solutions that violate the transversality condition are above the one that do not.

• They have bigger derivatives. Therefore, they have bigger norms:

0 ≤ ∥k ′∥S < ∥k̃ ′∥S . (1)
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Results: one initial condition
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1.70
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0.96

0.98

1.00

• Picking D = [0.8, 2.5]× {1} and k0 = 0.4 ̸∈ D
is “extrapolation” α = 1

3 , σ = 1, β = 0.9, and

g = 0. .

• Low generalization errors, even without

imposing transversality condition.

• Results for 100 different seeds (initialization of

the parameters)

For all k ∈ D
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Far from the steady state
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• Picking D = [0.8, 1.5] , k∗ /∈ [0.8, 1.5].

• A local grid around the k0 is enough.

• Accurate solutions in the interpolation region.

• Generalization errors are not bad.

• Results for 100 different seeds (initialization of

the parameters)
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Growing TFP
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• Picking D = [0.8, 3.5]× [0.8, 1.8] but now

g = 0.02.

• Choosing k ′(k, z ; θ) = zNN( kz , z ; θ).

• Here we used economic intuition to design the

H(Θ).

• Relative errors are very small inside the grid.

• Small generalization errors.

60



Are Euler and Bellman residuals

enough?



Euler residuals are not enough

• We picked a grid D and approximated k ′(k) with an over-parameterized function.

• The approximate solutions do not violate the transversality condition.

• What happens if we approximate the consumption functions c(k) with an over-parameterized

function.

• We get an interpolating solution, i.e, very small Euler residuals.

• However, the solutions violate the transversality condition.

Intuition: consumption functions with low derivatives leads to optimal policies for capital with big

derivatives.
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Small Euler residuals can be misleading
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• Left panels: approximating k ′(k) with a deep

neural network.

• The solutions do not violate the TVC.

• k ′(k) intersects with 45◦ line at k∗ ≈ 2.

• Right panels: approximating c(k) with a deep

neural network.

• The solutions violate the TVC.

• k ′(k) intersects with 45◦ line at k̃max ≈ 30.

• Euler residuals are systematically lower.
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Can regularization fix this problem?
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• Left panels: approximating c(k) with a deep

neural network without explicit regularization.

• What does happen with L2 regularization?

• Penalizing
∑

θi∈Θ θ2i .

• Right panels: approximating c(k) with a deep

neural network with explicit regularization.

• Using deep learning requires understanding the

inductive bias and economic theory.
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Conclusion

• Short- and medium-run accurate solutions can be obtained without strictly enforcing the long-run

boundary conditions on the model’s dynamics.

• Long-run (global) conditions can be replaced with appropriate regularization (local) to achieve

optimal solutions, hence the title of the paper.

• Inductive bias provides a foundation for modeling forward-looking behavioral agents with

self-consistent expectations.

64



Discussion: where to go from here?

• Can inductive bias/regularization be thought of as an equilibrium selection device?

• In this paper it is used to select solutions.

• This method (mostly the kernel method) can be used for sampling high-dimensional state spaces

when there is stochasticity.

• Solve the deterministic in short-run and use the points as sample of the state-space.

• Then solve the stochastic problem.
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Appendix



Deep Learning: random initialization and non-convex optimization
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Results: initial conditions over the state space
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• The solution has to satisfy the transversality condition for all points in X
limT→∞ βTu′(c(T ))k(T + 1) = 0 ∀ k0 ∈ X

• Three different initial condition for capital, all outside of X .
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