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Motivation, Question, and
Contribution



In the long run, we are all dead—J.M. Keynes, A Tract on Monetary Reform (1923)

Numerical solutions to dynamical systems are central to many quantitative fields in economics.

Many dynamical systems in economics are boundary value problems:

1. The boundary is at infinity.

2. The values at the boundary are potentially unknown.

Resulting from forward looking behavior of agents.

Examples include the transversality and the no-bubble condition.

Without them, the problems are ill-posed and have infinitely many solutions:

e These forward-looking boundary conditions are a key limitation on increasing dimensionality.



Question:

Can we (economists and agents) ignore these long-run boundary conditions and still have accurate
short/medium-run dynamics disciplined by the long-run conditions?



Contribution

1. Yes, it is possible to meet long-run boundary conditions without strictly enforcing them as a
constraint on the model’s dynamics.
e We show how using Machine Learning (ML) methods achieve this.
e This is due to the inductive bias of ML methods.

e In this paper focusing on deep neural networks

2. We argue the inductive bias provides a foundation for modeling forward-looking behavioral agents
with self-consistent expectations.

e Easy to compute.

e Provides short-run accuracy.



Background: Economic Models,
Deep learning and inductive bias



Economic : functional equations

Many theoretical models can be written as functional equations:

e Economic object of interest: f, where f : X — R C RN

e e.g., asset price, investment choice, best-response, etc.

e Domain of f: X

e e.g. space of dividends, capital, opponents state or time in sequential models.

e The “Economics model” error: E(X, f)

e e.g., Euler and Bellman residuals, equilibrium FOCs.

Then a solution is f* € F where {(x,f*) =0 for all x € X.



Approximate solution: deep neural networks

1. Sample X: D = {xq,--- ,xn}
2. Pick a deep neural network fy(-) € H(0):

e O: parameters for optimization (i.e., weights and biases).

3. To find an approximation for f solve:

1 )
min~ S (xh) I

x€D
€ Econ model error

e Deep neural networks are highly over-parameterized.
e Formally, |0] > N



Over-parameterized interpolation

e Being over-parameterized (|| > N), the optimization problem can have many solutions.

e Since individual 6 are irrelevant it is helpful to think of optimization directly within H
min + S 10 )3
foeH N
x€D
e But which 7?7
e Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm

in[|f;
{J‘é%” 0|

s.t.l(x,fp) =0, forall xeD

e That is what we mean by inductive bias (see Belkin, 2021 and Ma and Yang, 2021).
Characterizing v (e.g., Sobolev norms or semi-norms?) is an active research area in ML. 6



Over-parameterization and smooth interpolation

e Intuition: biased toward solutions which are flatter and have smaller derivatives

« Training Data
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Deep Learning: “Fit Without Fea

e "/ remember my friend Johnny von
Neumann used to say, with four
parameters | can fit an elephant, and
with five | can make him wiggle his
trunk." Enrico Fermi

e “The best way to solve the problem
from practical standpoint is you build
a very big system ... basically you
want to make sure you hit the zero
training error” Ruslan Salakhutdinov
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Deep Learning: Fit Without the Fear of Over-parameterization?

e Training Data

# of Parameters = 33 K
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Deep Learning: random initialization and non-convex optimization

Smooth Interpolation: Deep Neural Network with 33K Parameters
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Intuition of the paper

e Minimum-norm inductive bias:

e Over-parameterized models (e.g., large neural networks)
interpolate the train data.

e They are biased towards interpolating functions with
smaller norms.

e So they dont like explosive functions.

e Violation of economic boundary conditions:

e Sub-optimal solutions diverge (explode) over time.

e This is due to the saddle-path nature of econ problems.

e The long-run boundary conditions rule out the explosive
solutions.

—— Saddle path
--- Divergent paths
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QOutline




Outline of the talk

To explore how we can ignore the long-run boundary conditions, we show deep learning solutions to

1. Classic linear-asset pricing model.

2. Sequential formulation of the neoclassical growth model.

w

. Sequential formulation of the neoclassical growth model with non-concave production function.

4. Equivalent for a recursive formulation of the neoclassical growth model.
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Linear asset pricing and the
no-bubble condition




Linear asset pricing: setup

e The risk-neutral price, p(t), of a claim to a stream of dividends, y(t), is given by the recursive
equation:

B < 1, and y(t) is exogenous, y(0) given.
e This is a two dimensional dynamical system with unknown initial condition p(0). This problem is

ill-posed.
e A family of solutions
1 t
o) = prte) + ¢(3)
e Vad ﬂ
fundamentals
explosive bubble

o pr(t) =D, B7y(t+ 7). Each solution corresponds to a different ¢ > 0.

12



Linear asset pri condition

e Long-run boundary condition that rule out the
explosive bubbles and chooses ¢ = 0

plt) =pdt) + )"

o t
Jim, B°p(t) = 0. — g0
— p(t):{=0.1
3.0 p(t):=0.05
p(t):=0.025

e Any norm that preserve monotonicity, like L, >5

and Sobolev (semi-)norms .

min{|plly = llprlly

¢>0 1.5
1.0
e Ignoring the no-bubble condition and using a = T m = = = o
deep neural network provides an accurate Time()

approximation for pr(t).
13



Linear asset pricing: numerical method

Sample for time: D = {ty,- -, tn}.

Generating the dividend process: y(t+ 1) = ¢ + (1 + g)y(t), given y(0).

e An over-parameterized neural network py(t), ignore the non-bubble condition and solve

mln—Z[pg ﬁpg(t—l—l)]

teD

This minimization should provide an accurate short- and medium-run approximation for price based
on the fundamentals ps(t).

14



Linear asset pricing: results

e Two cases: g < 0and g > 0.

— po()=pr(t)

e Relative errors: ep(f) pr ()

o for g > 0: pp(t) = e?*NNy(t), ¢ is “learnable”.

e Results for 100 different seeds (initialization of
the parameters):

e important for non-convex optimizations.

e Very accurate short- and medium-run
approximation.
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Sequential neoclassical growth
model and the transversality
condition




Neoclassical growth model: setup

e Total factor productivity z(t) exogenously given, capital k(t) with given k(0), consumption c(t),
production function f(-), depreciation rate § < 1, discount factor 3 :

K(t+1) = 2(&)7F (k()) + (1 — )k(£) — c(t),
feasibility constraint
c(t+1) = Be(t) [z(t + 1) *F (k(t + 1)) +1— 6] .

Euler equation

e This is a three dimensional dynamical system with unknown initial condition ¢(0). This problem is
ill-posed.

e A family of solutions, each solution corresponds to a different ¢(0). Only one of them is the optimal
solution.
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Neoclassical growth model: the long-run boundary condition

e To rule out sub-optimal solutions,
transversality condition

lim yM

A ey

e Using a deep neural network and
ignoring the transversality condition
provides a an accurate approximation
for the optimal capital path.

K(t): possible solutions of Euler and feasibility
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Neoclassical growth model: numerical method

e Sample for time: D = {ty, -+, tn}.

e Generating the TFP process: z(t 4+ 1) = (1 + g)z(t), given z(0).
e A over-parameterized neural network ky(t),

Given ky(t), define the consumption function c(t; ko) = z(t)1~*f(ko(t)) + (1 — 8)ke(t) — ko(t + 1)

Ignore the transversality condition and solve

min NZ ttieke) —Blz(t + 1) F (ke(t + 1)) + (1= 0)] | + kg(0) — ko

Initial condition residual
Euler residuals

This minimization should provide an accurate short- and medium-run approximation for the optimal
capital and consumption path.
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Neoclassical growth model, no TFP growth: results

Capital and C

e g=0,2z(0)=1. -
_ ko(8)—k(t _ cltike)—c(t -
o eu(r) = L0, and eo(r) = gl ;
e Benchmark solution: value function iteration. A
e Results for 100 different seeds. =
e Very accurate short- and medium-run v
approximation. /

0.002
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Neoclassical growth model with TFP growth: results
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But, seriously “in the long run, we are all dead”

Capital: k(t) Relative error: =.(t)
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Neoclassical growth model: multiple steady-states and hysteresis

e When there are multiple steady states with saddle-path stability, each with its domain of attraction:

e Can the inductive bias detect there are multiple basins of attraction?
e How does the inductive bias move us toward the correct steady state for a given initial condition?

e Consider a non-concave production function:

f(k) = amax{k®, bik® — by}

f(k) = a max{k®%, b1k* — by}

e Two steady-states ki and k. — Production function

e The same numerical procedure.

Production
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Neoclassical growth model with i on: results

Capital: kq(t) Consumption: ¢y(t)
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e Different initial conditions in kg € [0.5,1.75] U [2.75, 4].
o In the vicinity of k" and k3 the paths converge to the right steady-states.
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Deep learning is not the only option: kernels

How Inductive Bias in Machine Learning Aligns with
. . Optimality in Economic Dynamics
e Deep learning might be too “spooky”.

° We can use kernels K( ) instead Of neura' Mahdi Ebrahimi Kahou'  James Yu? Jesse Perla®  Geoff Pleiss™?
, 5%l . ! !

"Bowdoin College  *University of British Columbia  *Vector Institute
m.ebrahimikahou@bowdoin.edu
networks and control the RKHS norms. For yuyuming8student .ubc. ca
jesse.perlaGubc.ca
geoff .pleiss@stat.ubc. ca

instance:

Abstract

This paper examines the alignment of inductive biases in machine learning (ML)
with structural models of cconomic dynamics. Unlike dynamical sysicms found
in physical and life sciences, cconomics models are often specified by differcntial
cquations with a mixture of casy-to-cnforce initial conditions and hard-to-cnforce
infinite horizon boundary c s (e.g. and

conditions). Traditional methods for enforcing these constraints are computa-
tionally expensive and unstable. We investigate algorithms where those infinite
horizon constraints arc ignored, simply training unregularized kemel machines
. and neural networks to obey the differential equations. Despite the inherent un-
e The same resu |t5, theoretical guarantees, very derspecification of this approach, our findings reveal that the inductive biases of

these ML models innately enforce the infinite-horizon conditions necessary for the

well-poseds We that ate or exact) min-
fast and robust. norm ML solutions to interpolation problems are sufficient conditions for these
infinite-horizon boundary conditions in a wide class of problems. We then provide
cempirical evidence that deep Iearning and ridgeless kernel methods arc not only
theoretically sound with respect to economic assumptions, but may even domi-
nate classic algorithms in low to medium dimensions. More importantly, these
results give confidence that, despite solving seemingly ill-posed problems, there
are reasons 1o trustthe plethora.of black-box ML dlgnnlhm~ used by cconomists
to solve p the
way for future work on estimation of inverse problems wnlh cmbedded optimal
control problems. 24




Extensions in the paper

e Sequential models:
e Shorter time-horizons.

e Misspecification of growth.

e Recursive neoclassical growth model
e Accurate short- and medium-run dynamics.

e Accurate solutions even with TFP growth.

e Deep learning solutions can go very wrong

e We should use the information in the transversality condition to know what to approximate.

25



Deep learning solutions can be misleading: approximating capital vs. consump-

tion

Euler residuals squared: approximating K'(k) Enler residuals squared: a

106 106 Euler res
e Capital k is the state variable. 10 107
e Two options: approximating capital policy ky(k) " 1w V\/W
or C@(k) 107 107
o left panels: results for kj(k) approximation. 107104 Bl vesidus s medion -

e Right panels: results for cy(k) approximation.

e Only the left panel results are correct. kj(k) has

3.5
a fixed point at the right steady state. 50
e However, the wrong solution has lower Euler 20
residuals. L3
1.0
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Conclusion

e Short- and medium-run accurate solutions can be obtained without strictly enforcing the long-run

boundary conditions on the model's dynamics.

e Long-run (global) conditions can be replaced with appropriate regularization (local) to achieve
optimal solutions, hence the title of the paper.

e Inductive bias provides a foundation for modeling forward-looking behavioral agents with

self-consistent expectations.

27



e to go from here?

e Can inductive bias/regularization be thought of as an equilibrium selection device?

e In this paper it is used to select solutions.

e This method (mostly the kernel method) can be used for sampling high-dimensional state spaces
when there is stochasticity.

e Solve the deterministic in short-run and use the points as sample of the state-space.

e Then solve the stochastic problem.

28
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Deep Learning: random initialization and non-convex optimization

Before training: Initialization with Uniform Distribution After training: Initialization with Uniform Distribution
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