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Motivation

In the long run, we are all dead—J.M. Keynes, A Tract on Monetary Reform (1923)

• Numerical solutions to dynamical systems are central to many quantitative fields in economics.

• Dynamical systems in economics are boundary value problems:

1. The boundary is at infinity.

2. The values at the boundary are potentially unknown.

• Resulting from forward looking behavior of agents.

• Examples include the transversality and the no-bubble condition.

• Without them, the problems are ill-posed and have infinitely many solutions:

• These forward-looking boundary conditions are a key limitation on increasing dimensionality.
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Contribution

1. Inductive bias alignment:

• The minimum-norm implicit bias of modern ML models automatically satisfies economic boundary

conditions at infinity.

2. Learning the right set of steady-states:

• Deep neural networks and kernel machines learn the boundary values, thereby extrapolating very

accurately.

3. Robustness and speed:

• Competitive in speed and more stable than traditional methods.

4. Consistency of ML estimates.
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Intuition

• Minimum-norm implicit bias:

• Over-parameterized models (e.g., large neural

networks) have more parameters than data

points and potentially interpolate the data.

• They are biased towards interpolating

functions with smallest norm.

• Violation of economic boundary conditions:

• Sub-optimal solutions diverge (explode) over

time.

• They have large or explosive norms.

• This is due to the saddle-path nature of econ

problems.
x

y

Saddle path
Divergent paths
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The Problem



The class of problems

A differential-algebraic system of equations, coming from an economic optimization problem:

ẋ(t) = F(x(t), y(t)) (1)

ẏ(t) = G(x(t), y(t)) (2)

0 = H(x(t), y(t)) (3)

x ∈ RNx : state variables, y ∈ RNy : jump variables. Initial value x(0) = x0 and boundary conditions (at

infinity)

0 = lim
t→∞

B(t, x(t), y(t)) (4)

Goal: finding an approximation for x(t) and y(t).

What is the problem?

• y0 is unknown.

• The optimal solutions is a saddle-path: unstable nature
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Method



Method

• Pick a set of points D ≡ {t1, · · · , tN} for some fixed interval [0,T ]

• Large machine learning models to learn x̂(t) and ŷ(t)

min
x̂,ŷ

∑
ti∈D

η1 ∥∥∥ˆ̇x(ti )− F(x̂(ti ), ŷ(ti )(ti ))
∥∥∥2
2︸ ︷︷ ︸

Residuals2: state variables

+η2

∥∥∥ˆ̇y(ti )− G(x̂(ti ), ŷ(ti ))
∥∥∥2
2︸ ︷︷ ︸

Residuals2: jump variables

+η3 ∥H(x̂(ti ), ŷ(ti ))∥22︸ ︷︷ ︸
Residuals2: algebraic constraint

+ η4 ∥x̂(0)− x0∥22︸ ︷︷ ︸
Residuals2: initial conditions

.

• This optimization ignores the boundary conditions.

• The implicit bias automatically satisfy the boundary conditions.

• Recent works suggest the implicit bias is toward smallest Sobolev semi-norms.
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Ridgeless kernel regression

ˆ̇x(t) =
N∑
j=1

αx
j K (t, tj), ˆ̇y(t) =

N∑
j=1

αy
j K (t, tj)

x̂(t) = x0 +

∫ t

0

ˆ̇x(τ)dτ, ŷ(t) = ŷ0 +

∫ t

0

ˆ̇y(τ)dτ

• x0 is given.

• ŷ0, αx
j , and αy

j are learnable parameters.

• K (·, ·) : Matérn Kernel, with smoothness parameter ν and length scale ℓ.
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Ridgeless kernel regression: minimum Sobolev seminorm solutions

We also solve the ridgeless kernel regression

lim
λ→0

min
x̂,ŷ

∑
ti∈D

[
η1

∥∥∥ˆ̇x(ti )− F(x̂(ti ), ŷ(ti )(ti ))
∥∥∥2
2
+ η2

∥∥∥ˆ̇y(ti )− G(x̂(ti ), ŷ(ti ))
∥∥∥2
2

+η3 ∥H(x̂(ti ), ŷ(ti ))∥22
]
+ η4 ∥x̂(0)− x̂0∥22 + λ

 Nx∑
m=1

∥ˆ̇x(m)∥2H +

Ny∑
m=1

∥ˆ̇y(m)∥2H


︸ ︷︷ ︸

The Sobolev semi-norm

• Targeting Sobolev semi-norm.

• This choice is very natural: it solves the instability issues of the classical algorithm.
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Applications



Linear asset pricing

ẋ(t) = c + gx(t) (5)

ẏ(t) = ry(t)− x(t) (6)

0 = lim
t→∞

e−rty(t) (7)

• x(t) ∈ R: dividends, y(t) ∈ R: prices, and x0 given.

• Equation (5): how the dividends evolve in time.

• Equation (6): how the prices evolve in time.

• Equation (7): “no-bubble” condition, the boundary condition at infinity.
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Why do we need the boundary condition?

ẋ(t) = c + gx(t)

ẏ(t) = ry(t)− x(t)

• The solutions:

y(t) = yf (t) + ζert

• yf (t) =
∫∞
0

e−rτx(t + s)ds: price based on the fundamentals.

• ζert : explosive bubble terms, it has to be ruled out by the boundary condition.

• Triangle inequality: ∥yf ∥ < ∥y∥.

• The price based on the fundamentals has the lowest norm.
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Results
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• The explosive solutions are ruled out without directly imposing the boundary condition.

• Very accurate approximations, both in the short- and medium-run.

• Learns the steady-state.
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Neoclassical growth model: the agent’s problem

max
y(t)

∫ ∞

0

e−rt ln(y(t))dt

s.t. ẋ(t) = f (x(t))− y(t)− δx(t)

for a given x0.

• x(t) ∈ R: capital, y(t) ∈ R: consumption, and a concave production function f (x) = xa.

Constructing the Hamiltonian ...

ẋ(t) = f (x(t))− y(t)− δx(t) (8)

ẏ(t) = y(t)
[
f ′(x(t))− δ − r

]
(9)

0 = lim
t→∞

e−rt x(t)

y(t)
(10)

• Equation (10) : transversality condition (TVC) 11



Why do we need the boundary condition?

Ignoring the transversality condition:

ẋ(t) = f (x(t))− y(t)− δx(t)

ẏ(t) = y(t)
[
f ′(x(t))− δ − r

]
x(0) = x0 given.
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Results
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• The explosive solutions are ruled out without directly imposing the boundary condition.

• Very accurate approximations, both in the short- and medium-run.

• Learns the right steady-state. Relative errors 13



Short-run planning: “In the long run, we are all dead”
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• The explosive solutions are ruled out without directly imposing the boundary condition.

• Provides a very accurate approximation in the short-run.
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Extensions



Neoclassical Growth Model: Non-Concave Production Function

• So far we have had a unique saddle-path converging to a unique saddle steady state.

• What if we have two saddle steady states, very close to each other (equilibrium multiplicity)?

• Neoclassical growth model with a non-concave production function (threshold externalities):

f (x) = Amax{xa, b1xa − b2}
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Non-concave production function: vector field

ẋ(t) = f (x(t))− y(t)− δx(t)

ẏ(t) = y(t)
[
f ′(x(t))− δ − r

]
x(0) = x0 given.
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Results
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• The approximate solutions approach the right steady states.

• The transversality conditions are satisfied without being directly imposed.

• The steady states are learned. Full DAE
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Conclusion

• Long-run (global) conditions can be replaced with appropriate regularization (local) to achieve the

optimal solutions.

• The minimum-norm implicit bias of large ML models aligns with optimality in economic dynamic

models.

• Both kernel and neural network approximations accurately learn the right steady state(s).

• Proceeding with caution: can regularization be thought of as an equilibrium selection device?
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Neoclassical growth: relative errors
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Human capital and growth

ẋk(t) = yk(t)− δkxk(t),

ẋh(t) = yh(t)− δkxh(t)

ẏc(t) = yc(t) [f1 (xk(t), xh(t))− δk − r ] ,

0 = f (xk(t), xh(t))− yc(t)− yk(t)− yh(t),

0 = f2 (xk(t), xh(t))− f1 (xk(t), xh(t)) + δk − δh.

0 = lim
t→∞

e−rt xk(t)

yc(t)
, 0 = lim

t→∞
e−rt xh(t)

yc(t)
.

• xk : physical capital, xh : human capital, yc : consumption, yk : investment in physical capital, yh:

investment in human capital

• f (xk , xh) = xakk xahh

Back 20



Results
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